P08ME45 Page No... 1

| U.S.N |  |  |  |  |  |
|-------|--|--|--|--|--|



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

### Fourth Semester, B.E. - Mechanical Engineering Semester End Examination; June/July - 2015 **Fluid Mechanics**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each Unit.

|       | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| 1. a. | . a. Define surface tension, prove that the relationship between surface tension and pressure inside                                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
|       | a droplet of liquid on excess of outside pressure is given by $P = \frac{4\sigma}{d}$                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |  |  |  |  |  |
| b.    | b. One liter of crude oil weighs 9.5 N. Calculate its specific weight density, specific gravity and specific volume.                                                                                                                                                                                                                                                                                                                                    |    |  |  |  |  |  |  |  |
| c.    | c. A Steel shaft of 30 mm diameter rotates at 240 rpm, in a bearing of diameter 32 mm. Lubricant oil of viscosity 5 poise is used for lubricant of shaft in the bearing. Determine the torque required at the shaft and power lost in maintaining the lubrication. Length of bearing is 90 mm.                                                                                                                                                          |    |  |  |  |  |  |  |  |
| 2 a.  | Differentiate between: (i) Liquids and gases (ii) Real fluids and ideal fluids.                                                                                                                                                                                                                                                                                                                                                                         | 4  |  |  |  |  |  |  |  |
| b.    | State and prove the Pascal's Law.                                                                                                                                                                                                                                                                                                                                                                                                                       | 6  |  |  |  |  |  |  |  |
| c.    | 2. Two large surfaces are 2.5 cm apart. This space is filled with glycerin of absolute viscosity 0.82 N-s m². Find what force is required to drag a plate of area 0.5 m² between the two surfaces at a speed of 0.6 m s. (i) when the plate is equidistant from the surfaces                                                                                                                                                                            |    |  |  |  |  |  |  |  |
|       | (ii) When the plate is at 1cm from one of the surfaces.                                                                                                                                                                                                                                                                                                                                                                                                 |    |  |  |  |  |  |  |  |
|       | UNIT – II                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |  |  |  |  |  |  |
| 3 a.  | Derive an expression for total pressure force and position of Centre of pressure of a vertical plane surface submerged in liquid.                                                                                                                                                                                                                                                                                                                       | 10 |  |  |  |  |  |  |  |
| b.    | A Single column vertical manometer is connected to a pipe containing oil of specific gravity 0.9. The cross section area of the reservoir is 80 times the C S area of the manometer tube. The reservoir contains mercury of specific gravity 13.6. The level of mercury in the reservoir is at a height of 30 cm below the centre of the pipe and difference of mercury levels in the reservoir and right limb is 50 cm. Find the pressure in the pipe. | 10 |  |  |  |  |  |  |  |
| 4 a.  | What is the difference between U tube and inverted U tube differential manometers? Where they are used?                                                                                                                                                                                                                                                                                                                                                 | 4  |  |  |  |  |  |  |  |
| b.    | Describe the analytical method of determining the meta centric height.                                                                                                                                                                                                                                                                                                                                                                                  | 10 |  |  |  |  |  |  |  |
| c.    | A block of wood of specific gravity $0.8$ floats in water. Determine the meta centric height of the block if its size is $3m \times 2m \times 1m$ .                                                                                                                                                                                                                                                                                                     | 6  |  |  |  |  |  |  |  |
|       | UNIT - III                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |  |  |  |  |  |

5 a. Derive continuity equation for a three dimensional steady in compressible fluid flow in

Cartesian co ordinates.

8

Contd...2

- b. Distinguish between: (i) Laminar and turbulent flows
  - (ii) Compressible and incompressible flows (iii) Rotational and Irrotational flows.

6

6

- c. A stream function for a 2D flow is given by  $\psi = 8xy$ . Calculate the velocity at a point P(4, 5). Find also the velocity potential function  $\phi$ .
  - 10
- 6. a. Derive an expression for Bernoulli's equation starting from fundamentals by considering the gravitational effect. State the assumptions.
- b. A Venturimeter is used for measurement of discharge of water in a horizontal pipe line, if the ratio of upstream pipe diameter to that of throat is 2:1, upstream diameter is 300 mm, the difference of pressure between the throat and upstream is equal 3 m head of water and loss of head through meter is one eighth of the throat velocity head, calculate discharge in the pipe.

# 10

### UNIT - IV

7 a. Define energy thickness and prove that energy thickness for boundary layer flow over a flat plate is given by

8

 $\delta^{**} = \int_0^8 \frac{u}{U} \left( 1 - \frac{u^2}{U^2} \right) dy$ 

8

b. Derive an expression for drag and lift force.

4

c. A projectile travels in air of pressure  $8.829 \text{ N/cm}^2$  at  $-10^0$ c at a speed of 1200 km/hr. Find the Mach number and the Mach angle. Take; k = 1.4 and R = 287 J/kgK.

10

8 a. Derive Darcy-Weisbach equation for the loss of head due to friction in a pipe.

10

b. The population of a town is 25000, which is projected to grow at a rate of 2% annually over a period of 25 years. It is stipulated that half of its daily supply of 100 litre per head of water is consumed in 8 hours. The town is to the supplied water from a reservoir situated at a distance of 2 km. The supply head is 12 m out of which 8 m should be available at the delivery end. For this perspective planning what size of steel pipe should be laid? The Chezy's constant of the pipe. C = 50.

#### UNIT - V

9 a. Derive an expression for the velocity distribution for viscous flow through a circular pipe.

10

- b. An oil of viscosity 0.1 N-s/m<sup>2</sup> and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and of length 300 m. The rate of flow of fluid through the pipe is 3.5 litres / sec. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall
- 10

- 10 a. Define the following dimension less numbers and state their significance:
  - i) Reynold's number
- (ii) Froude's number

10

- (iii) Euler's number
- (iv) Weber's number
- (v) Mach's number.
- b. Show that frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity  $\mu$  and density  $\rho$  in a turbulent flow is given by

10

 $T = \rho N^2 D^5 \phi \left( \frac{\mu}{\rho N D^2} \right)$