0	raction o	odick en	-	
.Y	OM		Ÿ.	
S		TOTA	H:	
a -	1	man	20	
1	A 3/	127	97	
2000	3	1		-
4	TOTAL BE	ENCINEED	1	

U.S.N					
11 S N					
0.0.1					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fourth Semester, B.E. - Mechanical Engineering Semester End Examination; June/July - 2015 Mechanical Measurements and Metrology

Time: 3 hrs Max. Marks: 100 **Note**: i) Answer **FIVE** full questions, selecting **ONE** full question from each **Unit**. ii) Assume suitable missing data if any. UNIT - I 1. a. Describe the different mode of operations of measuring instruments. 6 b. Discuss the different types of systematic errors. 6 c. With neat sketches explain linearity and Hysteresys in measuring instruments. 8 2 a. Differentiate between line and End standards 6 b. Three 200 mm gauges to be calibrated are measured on a level comparator by wringing them together and then comparing them with a 600 mm gauge. The 600 mm gauge has an actual length of 600.0025 mm and the three gauges together have a combined length of 10 600.0035 mm. When the three gauges are inter compared, it is found that gauge A is longer than gauge B by 0.0020 mm but shorter than C by 0.001 mm. Determine the length of each gauge. c. Discuss repeatability errors associated with measuring instruments. 4 UNIT – II 3 a. Discuss How selective assembly concept can be applied to piston and cylinder assembly. 6 b. Design the general type of GO and NOTGO gauges as per the present British system for a 40mm shaft and hole pair designated as 40H8/d9 given that i) $i = 0.453\sqrt[3]{D} + 0.001D$ ii) 40 mm lies in the diameter range of 30 - 50 mm iii) IT8 = 25i14 iv) IT9 = 40iv) upper derivation of shaft = $-16D^{0.44}$ vi) Wear allowance assumed to be 10% of gauge tolerance. Also show the disposition of tolerances also. 4 a. With sketches explain accumulation of tolerances and how it can be eliminated. 6

b.	Determine the actual dimensions to be provided for a shaft & hole of 90 mm size for H8e9		
	shaft type clearance fit given.		
	i) $i = 0.453\sqrt[3]{D} + 0.001D$		
	ii) IT8=25 i and IT9 = 40 i	1.4	
	iii) 90mm falls in the diameter steps of 80 and 100 mm	14	
	iv) fundamental deviation for e type shaft is $=-11D^{0.41}$		
	Also design s Go and NOGO gauge taking wear allowance as 10% of gauge tolerance, as per		
	the present British system.		
	UNIT – III		
5 a.	With a neat sketch explain the following:	12	
	i) Johanson Mikrokator (ii) Back Pressure Gauge	12	
b.	Describe Taylor-Hobson Talysurf with a neat sketch.	8	
6. a.	Discuss how increase in angle being set influences the accuracy of measurement in sine bar.	7	
b.	Define & derive an expression for best size wire.	7	
c.	Explain the following methods of quantifying surface roughness:	6	
	(i) R ₂ value ii) RMS value (iii) R _a value		
	$\mathbf{UNIT} \ -\mathbf{IV}$		
7 a.	With an appropriate example discuss primary secondary transducers.	6 8	
b.			
c.			
8 a.			
b.			
c.	List the quality attributes for transducers.	6	
	$\mathbf{UNIT} - \mathbf{V}$		
9 a.	Explain the working of a proving ring with a neat sketch.		
b.			
c.			
10 a.	Discuss the working of a Pirani gauge with a next diagram.	6	
b.	Describe the following:		
	i) Preparation and mounting of strain gauges.	8	
	ii) Thermo couple materials.		
c.	With a neat sketch explain the working of a hydraulic dynamometer.	6	