P13ME45			Page No 1						
Ç.	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fourth Semester, B.E Mechanical Engineering Semester End Examination; June/July - 2015 Fluid Mechanics									
	ne: 3 hrs : Answer FIVE full questions, selecting ONE full questio	n from			:. Ma	arks	: 100	<u>)</u>	
INOLE	UNIT - I	n jrom	euch Ul	uu.					
1. a.	Define surface tension, prove that the relationship betwe	en surfa	ace tens	ion a	nd p	ressu	re ins	side	
	a droplet of liquid on excess of outside pressure is given	by P=	$\frac{4\sigma}{d}$					6	
b.	One liter of crude oil weighs 9.5 N. Calculate its specific weight density, specific gravity and specific volume.								
c.	A Steel shaft of 30 mm diameter rotates at 240 rpm, in a bearing of diameter 32 mm. Lubricant oil of viscosity 5 poise is used for lubricant of shaft in the bearing. Determine the torque required at the shaft and power lost in maintaining the lubrication. Length of bearing is 90 mm.								
2 a.	Differentiate between: (i) Liquids and gases (i	i) Real	fluids a	nd id	eal f	luids	•	4	
b.	State and prove the Pascal's Law.							6	
c.	Two large surfaces are 2.5 cm apart. This space is filled with glycerin of absolute viscosity $0.82 \text{ N-s} \text{m}^2$. Find what force is required to drag a plate of area 0.5 m^2 between the two surfaces at a speed of $0.6 \text{ m} \text{s}$. (i) when the plate is equidistant from the surfaces								
	(ii) When the plate is at 1cm from one of the surfaces.								
	UNIT – II								
3 a.	Derive an expression for total pressure force and position plane surface submerged in liquid.	on of C	Centre o	f pre	ssure	e of a	a verti	ical 10	
b.	A Single column vertical manometer is connected to a pipe containing oil of specific gravity 0.9. The cross section area of the reservoir is 80 times the C S area of the manometer tube. The reservoir contains mercury of specific gravity 13.6. The level of mercury in the reservoir is at a height of 30 cm below the centre of the pipe and difference of mercury levels in the reservoir and right limb is 50 cm. Find the pressure in the pipe.							lbe. voir 10	
4 a.	What is the difference between U tube and inverted U they are used?	tube di	fferenti	al ma	nom	eters	? Wh	ere 4	
b.	Describe the analytical method of determining the meta of	centric	height.					10	
c.	A block of wood of specific gravity 0.8 floats in water. the block if its size is 3m x 2m x 1m.	Detern	nine the	meta	a cer	ntric 1	height	t of 6	
	UNIT - III								

5 a. Derive continuity equation for a three dimensional steady in compressible fluid flow in Cartesian co ordinates.

Contd...2

8

6

0

8

b. Distinguish between: (i) Laminar and turbulent flows

(ii) Compressible and incompressible flows (iii) Rotational and Irrotational flows.

- c. A stream function for a 2D flow is given by $\psi = 8xy$. Calculate the velocity at a point P(4, 5). 6 Find also the velocity potential function ϕ .
- 6. a. Derive an expression for Bernoulli's equation starting from fundamentals by considering the gravitational effect. State the assumptions.
 - b. A Venturimeter is used for measurement of discharge of water in a horizontal pipe line, if the ratio of upstream pipe diameter to that of throat is 2:1, upstream diameter is 300 mm, the difference of pressure between the throat and upstream is equal 3 m head of water and loss of head through meter is one eighth of the throat velocity head, calculate discharge in the pipe.

UNIT – IV

7 a. Define energy thickness and prove that energy thickness for boundary layer flow over a flat plate is given by

$$\delta^{**} = \int_0^8 \frac{u}{U} \left(1 - \frac{u^2}{U^2} \right) dy$$

- b. Derive an expression for drag and lift force.
- c. A projectile travels in air of pressure 8.829 N/cm² at -10^{0} c at a speed of 1200 km/hr. Find the Mach number and the Mach angle. Take; k = 1.4 and R = 287 J/kgK.
- 8 a. Derive Darcy-Weisbach equation for the loss of head due to friction in a pipe. 10
 - b. The population of a town is 25000, which is projected to grow at a rate of 2% annually over a period of 25 years. It is stipulated that half of its daily supply of 100 litre per head of water is consumed in 8 hours. The town is to the supplied water from a reservoir situated at a distance of 2 km. The supply head is 12 m out of which 8 m should be available at the delivery end. For this perspective planning what size of steel pipe should be laid? The Chezy's constant of the pipe. C = 50.

UNIT - V

- 9 a. Derive an expression for the velocity distribution for viscous flow through a circular pipe. 10
 - b. An oil of viscosity 0.1 N-s/m² and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and of length 300 m. The rate of flow of fluid through the pipe is 3.5 litres / sec. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall.
- 10 a. Define the following dimension less numbers and state their significance :

i) Reynold's number	(ii) Froude's number		
(iii) Euler's number	(iv) Weber's number	(v) Mach's number.	

b. Show that frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a turbulent flow is given by

$$T = \rho N^2 D^5 \phi \left(\frac{\mu}{\rho N D^2}\right)$$