
Р	P13ME64 Page No 1											
	P.E.S. College of Engineering, Mandya - 571 401											
(An Autonomous Institution affiliated to VTU, Belgaum)												
Sixth Semester, B.E Mechanical Engineering Semester End Examination; June - 2016												
Finite Element Method												
Time: 3 hrs Max. Marks: 100												
<i>Note: i</i>) Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each <i>unit</i> . <i>ii</i>) Missing data may suitably assume.												
UNIT - I												
1 a.	. Mention the difference between continuum method and FEM.	5										
b.	. Explain the basic steps involved in FEM.	7										
c.	. Using two point Gaussian quadrature formula evaluate $I = \int_{-1}^{+1} (1 + r + 2r^2 + 3r^3) dr$											
2 a.	. Explain principle of minimum potential energy.	4										
b.	. Write a short note on :	0										
	i) Size of element ii) Plane strain problem.	8										
c.	. Solve the following simultaneous equation by Gauss elimination method.											
	x + y + z = 9	0										
	x - 2y + 3z = 8	8										
	2x + y - z = 3											

UNIT - II

3 a.	What is	shape	function?	Derive	the	shape	function	of	1-D	bar	element	using	natural	7
	Co-ordina	ates.												,
b.	b. With necessary sketches, Explain concept of Iso, Sub and super parametric element.											8		

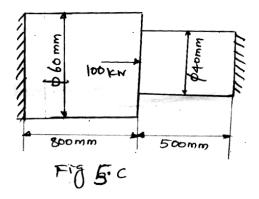
c. For the triangular plate shown in Fig. 3C, compute Jacobin matrix and area of element.

5

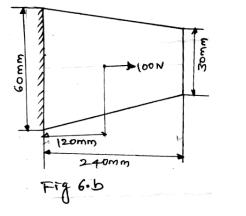
8

8

4

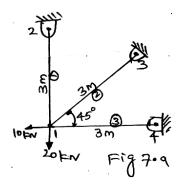

- 4 a. Drive shape function for 4 nodes bar element using Lagrangian method.
 - b. Drive shape function for rectangular element in Cartesian Co-ordinate.
 - c. Explain concept of Jacobin matrix.

Contd...2


P13ME64

UNIT - III

- 5 a. For a quadratic bar element, drive the expression for the stiffness matrix.
 - b. List the properties of stiffness matrix.
 - c. Using penalty method of handling boundary condition determine the nodal displacement, stress in each element and support reaction in the bar shown in Fig. 5.C due to applied force P = 100 kN. Take; $E_{\text{steel}} = 200 \text{ GPa}$, $E_{\text{cu}} = 100 \text{ GPa}$.



- 6 a. Explain elimination and penalty method of Handling Boundary condition.
 - b. Determine the nodal displacement, stress in each element and reaction at fixed support for thin plate uniform thickness of 1 mm as shown in Fig. 6.b take E = 200 GPa. Weight density of the plate $\rho = 76.6 \times 10^{-6}$ N/mm². In addition to its weight it is subjected to point load of 100 N at its mid point. Model the plate with two bar element.

7 a. For the plane trusses shown in Fig. 7a. Determine the displacements at the nodes and stress in each element. For all elements have E = 201 GPa and Area 4×10^{-4} m².

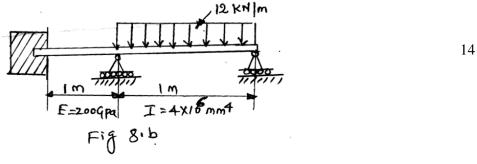
16

7

13

7

3


10

Contd....3

Page No... 3

P13ME64

- b. Define Trusses and list the assumptions made in to analysis of trusses.
- 8 a. Derive the load vector for the beam element subjected to uniformly distributed load.
 - b. Solve for vertical deflection and slopes at point 2 and 3 using beam elements for structure shown in Fig. 8.b. Also determine the deflection at the center of the portion of the beam carrying UDL.

UNIT - V

- Derive element conductivity matrix for a 1-D heat condition problem using Galerkin approach. 9 a. 8
 - b. Find the temperature distribution in the one dimensional fin shown in Fig. 9.b.

Given; $h = 6 \text{ W/cm}^2 \text{ °C}$, K = 80 W/cm °C.

- 10 a Explain types of boundary conditions in heat transfer problem.
 - b. For the brick wall shown Fig. 10.b. The inner surface temperature is 28° C and outer surface is exposed to cold air at -15° C. Determine the temperature distribution in steady state within the wall by considering 2 one dimensional heat flow elements. Given $K = 0.7 \text{ W/m}^2\text{C}$ and $h = 40 \text{ W/m}^2 \text{ °C}.$

$$\frac{0.3m}{14}$$

$$\frac{14}{14}$$

$$\frac{14}{12}$$

$$\frac{14}{14}$$

$$\frac{14}{12}$$

$$\frac{14}{14}$$

$$\frac{14}{12}$$

$$\frac{14}{14}$$

$$\frac{14}{14}$$

$$\frac{14}{14}$$

$$\frac{14}{14}$$

$$\frac{14}{14}$$

* * * *

4 6

6