P08ME752 Page No 1				
P.E.S. College of Engineering, Mandya - 571 401				
(An Autonomous Institution affiliated to VTU, Belgaum)				
Seventh Semester, B.E Mechanical Engineering				
Semester End Examination; Dec 2014				
TribologyTime: 3 hrsMax. Marks: 100				
Note: i) Answer any FIVE full questions, selecting at least TWO full questions from each part.				
ii)Use of design data book is permitted.				
PART - A				
1. a. Explain with sketches, the regimes of Lubrication.	9			
b. Derive Hagen Poiseville law, for the flow of fluid between two parallel stationary plates. Stat	te 11			
the assumptions made in the derivation.				
2. a. Derive Petroff's equation for the coefficient of friction in a lightly loaded bearing with usual	10			
notations. State the assumptions made in the derivation.	10			
b. A full journal bearing has the following of specifications. Shaft diameter = 46 mm, Bearin	g			
length = 66 mm, Radial clearance ratio = 0.0015; Speed = 2800 rpm, Radial load = 800 N	I;			
Viscosity of lubricant = 8.27×10^{-3} Pa-s. Considering the bearing as lightly loaded determined	e			
the following;	10			
i) Friction torque				
ii) Coefficient of friction				
iii) Power Loss.				
3 a. State the assumptions made in the derivation of Reynolds Equation in two dimensions.	5			
b. With usual notations, derive Reynolds equation in two dimensions.	15			
4 a. Derive an expression for the pressure distribution in an idealized plane sider bearing wit	h			
fixed shoes. State the assumptions.	10			
b. A shoe of a slider bearing has a square shape, so that $L = B$. The load acting on the bearing i	is			
W = 13344 N. The velocity of the moving member is $U = 7.6$ m/s. The lubricating oil is SA	E			
40. The expected average temperature of oil film is 74°C. The permissible minimum film				
thickness is $h_2 = 0.13$ mm. Determine;	10			
i) Required dimensions for L and B				
ii) The resistance force				

iii) The coefficient of friction.

PART – B

5 a. Derive an expression for rate of oil flow through bearings.	10
b. Write a note on self contained bearings and bearings lubricated under pressure.	5
c Write the procedure to determine the thermal equilibrium of a self contained bearings	5

P08N	ME752 Page No 2	
6 a.	Derive an expression for load capacity of an externally pressurized thrust bearing.	10
b.	A hydrostatic step bearing has the following specifications.	
	Diameters of shaft $d_2 = 153 \text{ mm}$; diameter of pocket $d_1 = 102 \text{ mm}$	
	Vertical thrust of hearing, $W = 45$ kN External pressure (atmospheric) $P_1 = 0$,	
	shaft speed = 900 rpm, viscosity of the lubricant η = 24 cp, oil film thickness h = 0.13 mm	10
	determine;	
	i) Rate of flow	
	ii) Power loss.	
7 a.	Explain the following standard parameters of roughness with expressions:	
	i) Average Roughness (R _a)	6
	ii) Root mean square roughness (R _q)	
b.	With a neat sketch explain stylus profilometry.	8
c.	Write a note on M and E system of standardisation.	6
8	Write note on the following:	
	a) Adhesion Theory of friction.	6
	b) Adhesive wear and abrasive wear	8
	c) Wear resistant materials	6

* * * * *