

Page No... 1 U.S.N DESCRIPTION OF STATES No... 1 P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Seventh Semester, B.E. - Mechanical Engineering Semester End Examination; Dec. - 2015 Finite Element Method

Time: 3 hrs

Max. Marks: 100

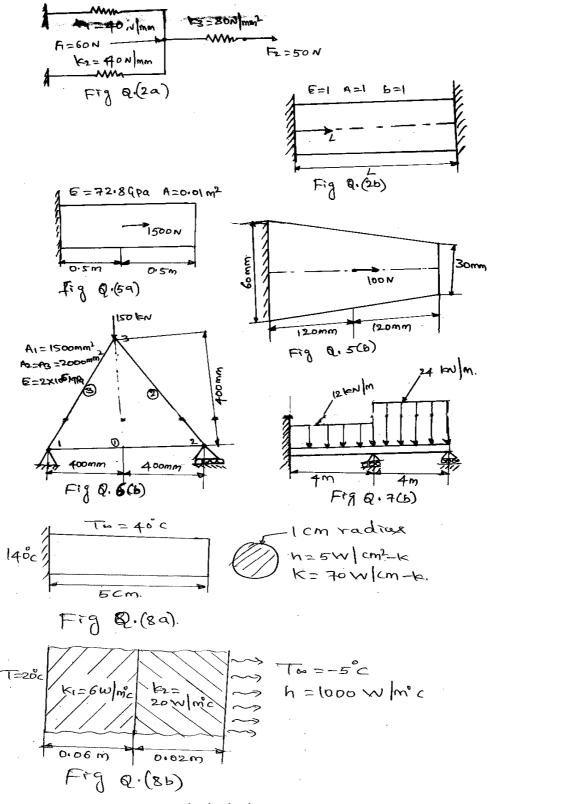
Note: Answer any *FIVE* full questions, selecting at least *TWO* full questions from each part. PART - A

1 a.	Sketch the different types of elements used in Finite element analysis and mention their	6
	application.	
b.	Explain the different types of node numbering schemes in finite element analysis.	6
c.	Solve the following system of simultaneous equation by Gauss elimination method,	
	x + y + z = 9	8
	x - 2y + 3z = 8	U
	2x + y - z = 3	
2 a.	Define plane strain problem plane stress problems.	4
b.	Using principle of minimum potential energy, determine the nodal displacement spring system	6
	shown in Fig. Q. 2(a).	0
c.	Using Rayleigh - method find the displacement of the mid point of the rod shown in	
	Fig. Q.2 (b) Force per unit volume = 1. Use second order polynomial approximation for	10
	displacement.	
3 a.	Write a short notes on following,	10
	i) Condition for convergence in FEM ii) Pascal's Triangle for 2 – D polynomials.	10
b.	Drive shape function for CST element in Cartesian co-ordinate.	10
4 a.	Explain the following :	10
	i) Elimination approach Boundary condition ii) Penalty approach Boundary condition.	12
b.	Derive stiffness matrix for a quadratic bar element.	8
	PART - B	
5 a.	A bar is subjected to axial load 1500 N at the mid length as shown in Fig. Q (5a). Determine	
	the displacement and stress in bar.	8
b.	Determine the nodal displacement and stress in each element for the thin plate of uniform	
	thickness of 1 mm as shown in Fig. Q.5 (b). Take; $E = 200$ GPa, $\rho = 76.6 \times 10^{-6}$ N/mm ³ . In	12
	addition to its weight it is subjected to a point load of 100N at its midpoint.	
6 a.	Define trusses. List out the assumption made in the deviation of a truss. Element formulation.	4
b.	For the truss shown in Fig. Q.6(b) determine;	
	(i) Nodal displacement (ii) Stress in each element	16

(iii) Reaction support $E = 2x10^5$ MPa, $A_1 = 1500$ mm², $A_2 = A_3 = 2000$ mm²

Contd...2

P08ME73


Page No... 2

7

13

10

- 7a. Derive the load vector for the beam subjected to uniformly distributed load.
- b. For the beam shown in Fig Q. 7 (b), determine the deflection at mid span of 2^{nd} element. Take I = 4 x 10^6 mm⁻⁴, E = 200 GPa.
- 8 a. Find the temperature distribution in the 1 D Fins shown in Fig. Q.8 (a). Take two elements for FE idealization, Take $h = 5 \text{ W/cm}^2$ K, K = 70 W/cm-K.
 - b. Determine the temperature distribution through the composite wall as shown in Fig. Q.8 (b).When convection heat loss occurs on the right surface. Assume a unit area.

* * * *