
P13ME71		Page No 1
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Seventh Semester, B.E Mechanical Engineering Semester End Examination; Dec - 2016/Jan - 2017 Automatic Control Engineering		
Time: 3 hrs		Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume suitably missing data if any. UNIT - I		
a. What are the basic requirements of an ideal control system?		
b. With block diagram explain :		
i) Regulator system	ii) Follow up system.	

- c. With suitable sketch explain automatic tank level control system and also identify system parameter and system components.
- 2 a. Determine the differential equation of the hydraulic system shown in Fig. 1

i) Relate head of the II tank with inflow of I tank

1

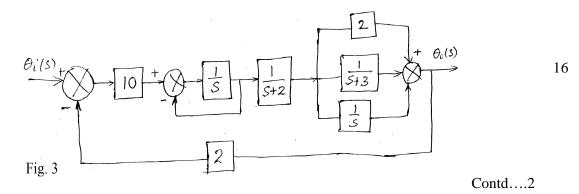
ii) Relate inflow of the I tank with outflow of II tank.

5

8

7

8


4

b. Obtain the differential equation for RLC electrical circuit.

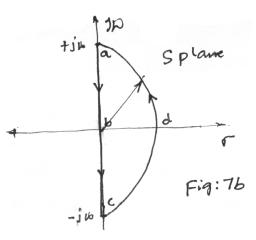
UNIT - II

3 a. Write a note on Summing junction.

b. Reduce the given block diagram into canonical form shown in Fig.3 and determine closed loop transfer function. Also represent in open loop form.

P13ME71 Page No... 2 4 a. Differentiate between block diagram and signal flow graph. 4 b. The equations describing the dynamic behavior of a control system are given below: $x_2 = a_{12}x_1 + a_{32}x_3 + a_{42}x_4 + a_{52}x_5$ $x_3 = a_{23}x_2$ $x_4 = a_{34}x_3 + a_{44}x_4$ 16 $x_5 = a_{35}x_3 + a_{45}x_4$ Where $x_1 \& x_5$ are the input and output? Construct the signal flow graph and find its overall gain. UNIT - III Obtain an expression for response of a second order mechanical system subjected to a step 5. 20 input for under damped case and also draw the response curve. 6 a. The system has characteristic equation $S^4+3S^3+4S^2+3S+K=0$. Determine the value of K, so that characteristic equation has two complex conjugate roots with zero real part. Find out 10 those roots by Routh Hurwitz criterion method.

b. Write a note on :


i) Static velocity error constant ii) Static acceleration error constant.

UNIT - IV

7 a. What are polar plots? Sketch the polar plot of the system having open loop transfer function,

$$G(S)H(S) = \frac{10S}{(1+4S)}$$

b. Obtain the Nyquist diagram for the system shown in Fig. 7b and ascertain its stability and its open loop transfer function is $G(S)H(S) = \frac{100}{(1+2S)}$

8. Construct the Bode plot on a semi log graph paper for a unity feedback system, whose open loop transfer function is given by $G(S)H(S) = \frac{10}{S(1+S)(1+0.02S)}$.

Contd....3

20

10

8

12

P13ME71

20

From the Bode plot determine;

- a) Gain and phase cross over frequencies
- b) Gain and phase margin
- c) Stability of the closed loop system.

UNIT - V

9. Draw the complete root locus plot for the system with open loop transfer function

$$G(S)H(S) = \frac{K}{S(S^2 + 4S + 7)}.$$
 Hence determine the range of values of K over which the 20

system remain stable and what is the range of damping factor for the dominant poles?

- 10. Write note on :
 - a) System state and state variable
 - b) Transformation matrix.

* * *