U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)
Seventh Semester, B.E. - Mechanical Engineering
Semester End Examination; Dec - 2016/Jan - 2017
Production Management

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

ii) Assume suitably missing data, if any.

UNIT - I

- 1 a. What do you understand by production management and what are the tools and techniques of PM?
 - b. Give a concise history of PM and state their future play.
- 2 a. Explain product focused and process focused organization structures.
 - b. Discuss the relationship between the product life cycle and productive system types.

UNIT - II

- 3 a. Explain any two qualitative methods of costing.
 - b. The sales data for rapid growth company for the past 12 years are given below:

Year	1	2	3	4	5	6	7	8	9	10	11	12
Sales (millions)	1	4	9	6	12	21	24	19	31	33	35	42

Use least square technique to determine the relationship between the company sales and time.

What will be the forecast for company sales for the period 13?

- 4 a. What are the forecasts? What steps are involved in using time series data to make a forecast?
 - b. A food processing company uses a moving average to forecast next months demand. Past actual data is given below:

Month	43	44	45	46	47	48	49	50	51
Actual Demand	105	106	110	110	114	121	130	128	137

- i) Compute a simple 5-month moving average to forecast demand for month 52.
- ii) Compute a weighted 3-month moving average where weights are highest for the latest months and descent in order 3, 2, 1.

UNIT - III

- 5 a. What are the influencing factors in facility location?
 - b. Using centre of gravity method, determine optimal location of a warehouse for the shipment of products to different market locations.

Market Area	A	В	C	D	Е	F	G	Н
Volume	08	20	12	10	30	20	40	30
Area Co-ordinates	(2.5, 10)	(3, 5)	(6.5, 8)	(11, 10)	(11, 8)	(10, 4)	(13, 3.5)	(12, 2)

10

10

10

10

10

10

10

10

- 6 a. Explain Break Even Analysis in detail.
 - b. A firm is considering four alternative locations for a new plant and has researched the costs as shown below. Determine the most suitable location (economically) for output volume in the range of 50000 to 130000 units/year.

Costs	Location A	Location B	Location C	Location D
Fixed cost (`) per year	6,00,000	4,50,000	5,00,000	5,75,000
Variable cost (`) per unit	1.00	1.80	1.30	0.80

UNIT - IV

7 a. State Johnson's algorithm for n jobs 2 machines and n jobs 3 machines.

8

12

8

12

4

16

8

12

b. The following data pertains to a single machine scheduling mean flow time and also obtain the minimum mean flow time.

 Job Number
 1
 2
 3
 4
 5

 Processing time (hrs)
 15
 4
 5
 14
 8

- 8 a. What are the assumptions in scheduling sequence?
 - b. Using graphical method, determine the optimal sequence for each machine find the job which is to be done first. Also calculate the total needed to complete both the jobs.

Job 1	Sequence:	A	В	C	D	E
	Time(hrs)	1	2	3	5	1
Job 2	Sequence:	C	A	D	Е	В
	Time (hrs):	3	4	2	1	5

UNIT - V

- 9 a. Write a note on Gantt chart.
 - b. Solve the following machine loading problem using Indexing method. Assume total number of hours available on each machine 65.

Job:	1	2	3	4	5	6	7	8	9	10
M/c A	10	18	17	16	12	16	12	15	25	18
M/c B	15	20	21	17	20	22	-	18	30	25
M/c C	14	22	25	24	17	19	18	16	27	29
M/c D	12	27	28	25	-	28	22	20	35	32

- 10. Explain the following:
 - i) Centralized and decentralized dispatching

10

ii) Expediting and progress reporting.

10