

Note: i) Answer any *FIVE* full questions selecting at least *TWO* full questions from each *part*. *ii*) Any missing data may be suitably assumed

PART - A

1. a	What are the elements involved in a complete CFD Analysis?	10
b.	Write down the expression for conservatives from a energy momentum equations.	5
c.	What are the disadvantages of CFD?	5
2 a.	With line diagram briefly explain the classification of Partial differential equations.	8
b.	Briefly discuss the physical behavior of equilibrium and time marching problem with suitable example.	12
3 a.	Develop the algorithm of the Newton - Raphson method.	12
b.	Use Gaussian elimination method to solve:	
	$20x_1 + 15x_2 + 10x_3 = 45$	8
	$-3x_1 + 2.249x_2 + 7x_3 = 1.751$	
	$5x_1 + x_2 + 3x_3 = 9$	
4 a.	Obtain the finite difference equation for the following second order equations using Taylors	
	expansion.	10
	i) i) $\frac{\partial^2 T}{\partial x^2}$ ii) $\frac{\partial^2 T}{\partial y^2}$ iii) $\frac{\partial^2 T}{\partial x \partial y}$	10
b.	Using FTCS scheme discretize the PDE given below.	
	$\frac{\partial^2 T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$	4

 c. Determine the stability requirement necessary for solving first order wave equations. Using FTBS scheme.

PART – B

5 a.	What is upwind scheme? Explain the scheme with respect to wave equation.	6
b.	Difference between numerical dissipation and disporsion.	8
c.	Distinguish between implicit and explicit schemes with examples.	6

6

P08ME836

6 a. The aluminum alloy of length 50 cm, with radius of 5 mm them is maintained at a temperature 200°C. The fin is losing heat to the surrounding media at 25°C using finite difference method with 6 nodes along X – direction. Find local temperatures the Governing D.E. is,

$$\frac{\partial^2 T}{\partial x^2} - \frac{hp}{KA} \left(T_b - T_\infty \right) = 0$$

Where K = 180 W/m K, and h = 15 W/m²K.

- b. Write the finite difference algorithms for the simple explicit and simple implicit scheme that can be used to solve heat equations.
- 7 a. What are the advantages of FVM over FDM? Explain.
- b. Consider a sources free heat conduction in a insulated rod of length of 0.5 m whose ends are maintained at constant temperature of 100°C and 500°C respectively the one dimensional problem is governed by

$$\frac{d}{dx}\left(\frac{K\ dT}{dx}\right) = 0$$
14

Calculate steady state temperature distribution in the rod using 5 volume elements given that

K = 1000 W/mK and cross section area $A = 1 \times 10^{-2} \text{ m}^2$.

8 a. Explain important properties of descritization scheme.
 b. Derive the general decritized form for one dimensional heat diffusion equation by FVM and also tabulate coefficient of φ for all the directions.