

Note: Answer any FIVE full questions selecting at least TWO questions from each part.

PART - A

1 a.	With the help of a block diagram explain the methodology involved in solving a problem in	8
	CFD.	
b.	Derive continuity equation in Cartesian coordinate systems.	5
c.	Starting from Newton's second law of motion obtain an expression for momentum equation	7
	along X – axis.	
2 a.	Write a short notes on the physical interpretations of ;	12
	i) Hyperbolic equations ii) Parabolic equations iii) Elliptic equations.	
b.	Show that Laplace Equation $[\nabla^2 \phi = 0]$ is an Elliptic Equation. Also write a note on its	8
	physical behavior.	
3 a.	Solve the equations by Gauss Elimination method.	
	x + 4y - z = -5	8
	x + y - 6z = -12	0
	3x - y - z = 4	
b.	Solve the equations by Gauss Siedal iteration method.	
	20x + y - 2z = 17	12
	3x + 20y - z = -18	12
	2x - 3y + 20z = 25	
4 a.	Write the finite difference equations for the following partial differentials.	
	i) $\frac{\partial^2 u}{\partial y^2}$	
	ii) $\frac{\partial u}{\partial y}$ (using central differencing scheme)	12
	iii) $\frac{\partial^2 u}{\partial x \partial y}$	
	iv) $\frac{\partial^2 u}{\partial x^2}$	

b. What is Courant Number? Define Discretiztion error and round off error with respect to the finite difference scheme.

8

P08ME836

PART - B

- 5 a. List down the advantages and disadvantages of explicit and implicit methods of discretization.
- b. Consider an aluminum alloy fin [K = 200 W/m°C] of length 6 cm with radius 0.8 cm. The base of the fin is maintained at a temperature of 220°C. The fin is loosing heat to the surrounding media at $T_{\infty} = 27^{\circ}$ C with heat transfer co-efficient h = 18 W/m²°C using Finite difference scheme with 6 nodes along the x direction of fin. Find nodal temperatures assume the sin to be tip insulated [i.e. $\frac{dT}{dx(x=l)} = 0$. The Governing differential equation is

given by
$$\frac{\partial^2 T}{\partial x^2} - \frac{hP}{KA} (T_s - T_\infty) = 0$$

- 6 a. Discuss Von-Neumann Stability criteria for heat equation $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial r^2}$ 5
- b. An insulated rod initially at O°C, the boundary conditions are changed to 100°C at the left end and 50°C on the other end. The length of the rod is 10 cm and thermal diffusivity is $8.35 \times 10^{-5} \text{m}^2/\text{s}$. Using the discretization with $\Delta x = 2$ cm. Determine the temperature of the node after 25 using an explicit method. Comment on the time step selected based on stability criteria.
- 7 a. Consider source free heat conduction in an insulated rod of length 0.5 m whose ends are maintained at constant temperature of 100°C and 500°C the one dimensional problem is governed by $\frac{d}{dx} \left[K \frac{dT}{dx} \right] = 0$ calculate the steady sate temperature distribution in rod. Assume

5 volume elements, $K = 1000 \text{ W/m}^{\circ}\text{C}$ and $A = 10^{-2}\text{m}^{2}$.

- b. Discuss the benefits of Finite volume method over Finite difference method.
- 8 a. Discretize the following one dimensions steady state conduction equation using Finite volume method.

$$\frac{d}{dx} \left[K \frac{dT}{dx} \right] + S = 0$$
10

b. A property ϕ is transported by means of convection and diffusion through the one dimensional domain the boundary conditions are $\phi_0 = 1$ at x = 0 and $\phi_2 = 0$ at x = L, using five equally spaced calls and central differencing scheme for convection and diffusion calculate the distribution of ϕ as a function of x for U = 2.5 m/s.

15

5

10