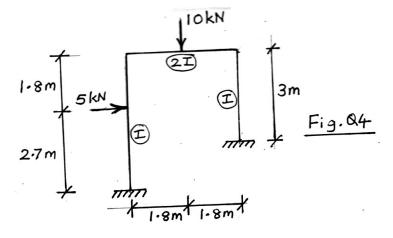


2. Analyze the pin-jointed plane truss shown in Fig. Q2, by direct stiffness method. Take $A = 100 \text{ mm}^2$ and E = 200 GPa for all members.

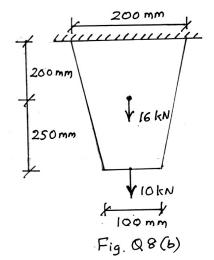
$F_{ig.Q2}$


3. Analyze the continuous beam shown in Fig. Q3, by direct stiffness method. Sketch neatly the BMD, and SFD. Assume $EI = 48,000 \text{ kN-m}^2$.

4. Analyze the rigid-jointed plane frame shown in Fig. Q4, by direct stiffness method. Sketch neatly the BMD.

20

20



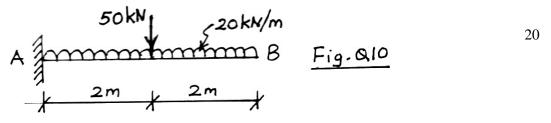
UNIT - III

5 a.	List the advantages of finite element method.	5		
b.	State and explain the principle of minimum potential energy.	5		
c.	Explain the important steps in finite element analysis.	10		
6 a.	Discuss on 'the choice of displacement function' in finite element analysis.	6		
b.	Discuss the concept of weighted residual method.	8		
c.	What are natural coordinates? Explain its importance.	6		
LINIT - IV				

7 a.	a. Obtain the shape functions for a two-noded bar element using Lagrange interpolation formula.		
	Also sketch neatly the shape functions.	3	
b.	Derive the expression of equivalent nodal body force vector for a three-noded bar element.	8	
c.	Derive the stiffness matrix for a two-noded bar element.	7	
8 a.	What are isoparametric elements? Discuss with a suitable example.	5	
1			

b. A circular tapering bar carries loads as shown in Fig. Q8(b). It also carries a tractive force 6 kN/m. The weight density is 78 kN/m³. Idealise the bar as two 2-noded bar elements. Find the stresses in the two elements. Take E = 200 GPa.

15


Page No... 3

4

P15MCAD11

UNIT - V

- 9 a. Sketch neatly a beam element showing the DOFs. Write the stiffness matrix of the beam 4 element (Do not derive).
 - b. Explain consistent nodal loads with an example.
 - c. Derive the shape functions for a two-noded beam element. Also plot neatly the variation of the 12 shape functions.
- 10. Analyze the cantilever beam shown in Fig. Q10, by finite element analysis. Take $EI = 40,000 \text{ kN-m}^2$. Sketch BMD, elastic curve and SFD.

* * *