U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

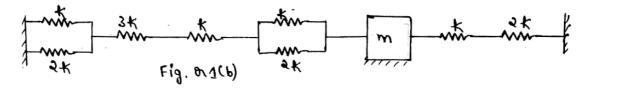
First Semester, M. Tech -Civil Engineering (MCAD)
Semester End Examination; Jan/Feb. - 2016
Structural Dynamics – Theory and Computation

Time: 3 hrs Max. Marks: 100

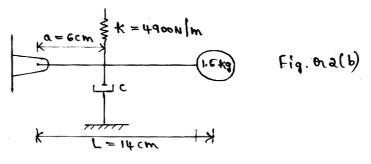
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Derive the differential equation of motion for the free vibration of a spring mass system; obtain the solution of the differential equation. Sketch the motion of the system.
 - b. Find the natural frequency of the system shown in Fig Q. 1(b) Take; m = 20 kg, K = 100 N/m



- 2 a. Derive the expression for logarithmic decrement of a SDOF damped system.
 - b. For the system shown in Fig. Q.2 (b), write the equation of the motion and determine the critical damping co-efficient.



- UNIT II
- 3 a. A spring mass dashpot-system is subjected to harmonic force $F_0 \sin wt$. Derive the expression for dynamic magnification factor.
 - b. A vibrating system having mass 1 kg is suspended by a spring of stiffness 1000 N/m and it is put to harmonic excitation of 10 N. Assume various damping, determine the following:
 - i) Resonant frequency

- ii) Amplitude of resonance
- iii) Frequency corresponding to the peak amplitude
- iv) Damped frequency

- Take; C = 40 N-s/m.
- 4 a. Derive the expression for Duhamel's integral for the response due to general dynamic loading.
 - b. Derive the expression for dynamic amplitude for a rotating and reciprocating unbalanced mass subjected to forced vibration.
 - c. For what value of 'm' will resonance occur for the system shown in Fig Q4(c)

8

8

14

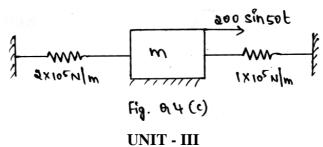
6

8

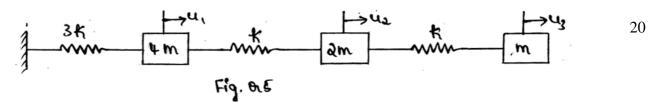
12

12

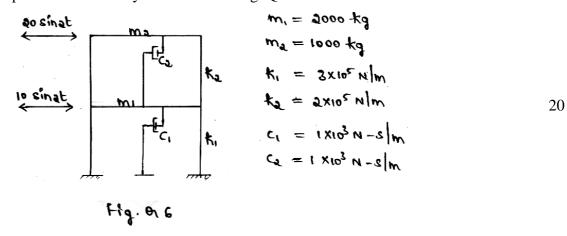
8



5. For the system shown in Fig. Q. 5. Obtain natural frequencies and the corresponding mode shapes.



6. Determine the response for MDOF system shown in Fig. Q 6.



UNIT - IV

- 7. Determine the expressions for the natural frequencies and mode shapes for a uniform cantilever bar in axial vibration.
- 8. Obtain the general expression for the natural frequencies of free flexural vibration of a simply supported beam of length l and uniform cross section. Assume flexural rigidity EI, cross 20 sectional area A and mass density ρ .

UNIT - V

- 9. Using the cubic Hermitian polynomials, determine the stiffness co-efficient k_{ii} for I=1 to 4 for a two noded Euler-Bernoulli element.
- 10. Write short note on any four
 - i) Lumped and consistent mass matrix for dynamic analysis of beams
 - ii) Orthogonality of normal modes
 - iii) D'Alembert's Principle
 - iv) Vibration measuring instruments
 - v) Force Transmissibility

20

20

20

* * *