UNIT - II

3. A cantilever of uniform rectangular section and depth 2C is subjected to a point load P at its end as shown in fig.1 using the following conditions,

$$At \quad x = L \qquad y = 0 \qquad u = v = 0$$
$$x = L \qquad y = \pm c \qquad u = 0$$

Show that the deflection is given by,

$$V_{x=0} = \frac{PL^{3}}{3EI} \left(1 + \frac{1}{2} [4 + 5\mu] \frac{C^{2}}{L^{2}} \right)$$

$$20$$

$$4 + \frac{1}{2} [4 + 5\mu] \frac{C^{2}}{L^{2}}$$

$$4 + \frac{1}{2} [4 + \frac{1}{2} [4 + 5\mu] \frac{C^{2}}{L^{2}}$$

$$4 + \frac{$$

Contd....2

P1	5MCAD13 Page No 2	
4 a.	Using a stress function in the form of a polynomial of the fourth degree. Plot the stress on a	10
	rectangular plate of size $2C \times L$.	12
b.	Explain the use of polynomials in the solution of rectangular beam problems.	4
c.	Write a short note on Airy's stress function.	4
UNIT - III		
5.	Discuss the bending of a curved bar subjected to a concentrated force at the end.	20
6 a.	Derive the partial differential equation of equilibrium in polar co-ordinates for 2 dimensional	10
	body.	10
b.	Derive the general expression for the stress components in the case of axis-symmetric distribution.	10
	UNIT - IV	
7.	The state of stress at a point is given by the following matrix,	
/.		
	9 6 5 6 5 2 MPa 3 2 4	20
		-
	Find the principal stresses and check the invariance. Also determine the principal directions.	
8 a.	The strain tensor at a point in a body is given by,	
	0.0005 0.0008 0.0007	
	$E_{ij} = \begin{bmatrix} 0.0008 & 0.0004 & 0.0006 \\ 0.0007 & 0.0006 & 0.0003 \end{bmatrix}$	
	0.0007 0.0006 0.0003	16
	Determine:	
	(i) Octahedral normal and shearing strain	
	(ii) Deviator and spherical strain tensors.	
b.	Explain strain tensor.	4
UNIT - V		
9 a.	Develop the Jacobean matrix for the three noded triangular. Also derive the strain	14
	displacement matrix for CST element.	11
b.	What are the isoparametric, sub parametric and super parametric element with neat sketches.	6
10 a.	Derive the shape function for eight-noded rectangular element using natural co-ordinate.	10
b.	Develop the strain-displacement matrix for the axis symmetric element for three noded	10
	triangular elements.	
* * *		