U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)
Second Semester, M. Tech - Civil Engineering (MCAD)
Make-up Examination; July - 2016
Analysis of Plates

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume missing data if any.

UNIT - I

- 1 a. Show that the sum of curvatures in any two mutually perpendicular directions is independent of the chosen coordinate axes.
 - b. Derive from fundamentals the equation for deflection of a long rectangular plate under UDL, bending over short span. Hence find the deflection of a long plate with h=125 mm, $\mu=0.12$, q=5 kN/m², span = 1 m and $E=0.2x10^6$ MPa. The length of the plate is much longer than its span.
- 2. Derive an equation $\frac{d}{dr} \left\{ \frac{1}{r} \frac{d}{dr} \left(\frac{rdw}{dr} \right) \right\} = \frac{Q}{D}$ with usual notations for a solid circular plate in bending. Hence forth derive an expression for deflection, and subjected to a uniformly distributed load of intensity 'q' per unit area.

UNIT - II

3 a. Derive the differential equation of the deflected surface of a plate in the form of,

$$\nabla^4 w = \frac{q}{D}.$$

- b. Determine the maximum deflection of a simply supported rectangular plate under sinusoidal load $q = q_0 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}$.
- 4. Using Navier's solution obtain the expression for maximum deflection and bending moments for an all round simply supported rectangular plate subjected to UDL 'q' per unit area.

UNIT - III

- 5. Using levy's solution, obtain the expression for maximum deflection in case of simply supported rectangular plate is subjected to $\omega = \sum_{m=1}^{\infty} y_n \sin \frac{m\pi x}{a}$.
- 6. Find the deflection of rectangular plate a x b subjected to symmetric moments distributed along the edges $y = \pm \frac{b}{2}$.

10

10

UNIT - IV

7.	Derive the approximate formula for uniformly loaded circular plates with large deflections.	20	
8.	Obtain the exact solution for large deflections of a circular plate with clamped edge subjected	ted 20	
	to uniformly distributed load.	20	

UNIT - V

- 9. Using finite difference technique analyse the bending of a square plate of size a x a with simply supported edges subjected to UDL of intensity 'q' per unit area. Use mesh size $h = \frac{a}{4}$.
- 10. Determine the deflection and moment at various points of a plate clamped along the edges of size a x a subjected to UDL of intensity q_0 per unit area. Use mesh size $\frac{a}{4}$.

* * * *