Reliability Analysis and Design of Structural Elements

Time: 3 hrs

Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume missing data if any.

UNIT - I

1 a. Find the mean, standard deviation and coefficient of variance for the grouped data given,

Class	1 – 10	11 – 20	21 - 30	31 - 40	41 - 50	51 - 60	10
Frequency	03	16	26	31	16	08	

b. In a data set of n = 200 on yield strength of steel, $\overline{x} = 500$ MPa and $\sigma = 60$ MPa. However, later on it's found that a value of 415 MPa was wrongly entered as 451 MPa. Find the 10 corrected mean and corrected standard deviation.

2 a. The following table gives the strength of the concrete. Find the central moments, coefficient of skewness and coefficient of Kurtosis.

Compressive strength N/mm ²	60 - 62	63 - 65	66 - 68	69 – 71	72 - 74
Frequency (f _i)	05	18	42	27	08

b. The cube strength of concrete follows a normal distribution with $\mu_x = 30$ N/mm² and $\sigma_x = 45$ N/mm²,

Calculate: i) P(x < 25) ii) $P(35 \le x \le 45)$.

UNIT - II

Cylinder Strength N/mm² (y_i)

9.86

11.29

- 3 a. Derive the normal equation of best fit parabola by lest square method.
 - b. The data on cube strength and Cylinder strength is given below,

Cube Strength N/mm² (x_i)

15.17

17.92

20.13	12.48
22.54	14.65
24.80	15.38
18.67	11.95
22.91	14.43
27.70	18.00
29.24	18.42
18.27	11.69

Determine the sample covariance, co-relation and coefficient between x_i and y_i .

10

10

10

10

P15MCAD321

4 a. The data on the compressive strength of concrete is given below:

i) Fit a straight line ii) Fit a parabola iii) Find which is better fit

Days (x_i)	1	3	7	10	14	21	28
Compressive strength N/mm ² (y_{i})	7.2	10.5	13.2	15.6	18.1	20.3	25.2

b. Fit a curve of the form $y = ab^x$ for the following data. Find the shrinkage strain

when x = 7.5

Days (x _i)	1	2	3	4	5	6	7	8
Shrinkage strain (y _{i)}	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1

UNIT - III

5. For the following data, a log normal distribution and proposed. Find the expected frequencies that are proposed. Conduct a Chi-square test to accept (d) reject the proposal.

Class MPa	12 - 14	14 - 16	16 - 18	20 - 22	22 - 24	24 - 26
Frequency	16	53	88	30	15	03

6. Derive the statistics of
$$R = f_y A_{st} d \left[1 - \frac{0.77 f_y A_{st}}{f_{ck} b d} \right]$$

 $f_{y} = N[425, 45]MPa$ $f_{ck} = N[23.2, 6.8]MPa$ Where $A_{st} = N[1500, 60]mm^{2}$ b = N[230, 12]mm d = N[450, 15]mm

List the variables in the order of their contribution to randomness of 'R'.

UNIT - IV

7. Determine ' β ' by FOSM method by using the failure function,

i)
$$M = \frac{\pi^2 EI}{l^2} - Q$$
 ii) $M = I - \frac{Ql^2}{\pi^2 E}$
 $E = N [2.03 \times 10^5, 0.203 \times 10^5] MPa$
Where $Q = N [700 \times 10^3, 210 \times 10^3] N$
 $I = N [12.5 \times 10^6, 0.0625 \times 10^6] mm^4$
 $l = N [5000, 150] mm$

Check whether β is Invariant (or) not Invariant.

20

8

12

20

20

P15MCAD321

The failure function $g(x) = d - \frac{Q}{2f_s t_w}$ 8.

$$Q = N [4200, 1000] N$$

 $f_s = N [95, 10] N / mm^2$
Where $d = N [50, 2.5] mm$
 $\sigma_{tw} = 0, \quad \frac{d}{t_w} = 40$

Find the reliability Index ' β ' by AFOSM method. Use Harofer-Lind approach.

UNIT - V

9. A short column has a diameter X_1 and is loaded with an axial load X_2 . The ultimate compressive stress of column is X_3 . The variables are normally distributed and have the following statistics.

$$X_{1} = N(3.5, 0.4) \qquad X_{2} = N(10, 10) \qquad X_{3} = N(2.5, 0.5)$$

$$g(x) = \frac{\pi X_{1}^{2}}{4} - \frac{X_{2}}{X_{3}} = 0$$
20

Find ' β ' by AFOSM method using Fisseler's algorithm.

10. The strength of an axially loaded column is given by,

$$R = 82912.5 f_{ck} + 1250 f_{y}$$

Where $f_{ck} = N[19.54, 4.1] \quad N / mm^2$, $f_y = N[469, 46.9] \quad N / mm^2$ Generate the statistics of 'R'(n = 20). The column is subjected to an axial load of S = N[2100, 500]kN. Generate statistics of (R-S) by Monte Carlo simulation technique. Find the probability of failure of column, by counting negative values of (R-S).

* * *

Page No... 3

20

20