

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, M. Tech. - Civil Engineering (MCAD)
Semester End Examination; Dec - 2016/Jan - 2017
Reliability Analysis and Design of Structural Elements
Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume missing data if any.

UNIT - I

1 a. Find the mean, standard deviation and coefficient of variance for the grouped data given,

Class	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
Frequency	03	16	26	31	16	08

b. In a data set of $n=200$ on yield strength of steel, $\bar{x}=500 \mathrm{MPa}$ and $\sigma=60 \mathrm{MPa}$. However, later on it's found that a value of 415 MPa was wrongly entered as 451 MPa . Find the corrected mean and corrected standard deviation.

2 a . The following table gives the strength of the concrete. Find the central moments, coefficient of skewness and coefficient of Kurtosis.

Compressive strength $\mathrm{N} / \mathrm{mm}^{2}$	$60-62$	$63-65$	$66-68$	$69-71$	$72-74$
Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	05	18	42	27	08

b. The cube strength of concrete follows a normal distribution with $\mu_{\mathrm{x}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ and $\sigma_{\mathrm{x}}=45 \mathrm{~N} / \mathrm{mm}^{2}$,

Calculate: i) $\mathrm{P}(x<25) \quad$ ii) $\mathrm{P}(35 \leq x \leq 45)$.
UNIT - II
3 a. Derive the normal equation of best fit parabola by lest square method.
b. The data on cube strength and Cylinder strength is given below,

Cube Strength N/mm ${ }^{2}\left(\mathrm{x}_{\mathrm{i}}\right)$	Cylinder Strength $\mathrm{N} / \mathrm{mm}^{2}\left(y_{\mathrm{i}}\right)$
15.17	9.86
17.92	11.29
20.13	12.48
22.54	14.65
24.80	15.38
18.67	11.95
22.91	14.43
27.70	18.00
29.24	18.42
18.27	11.69

Determine the sample covariance, co-relation and coefficient between x_{i} and y_{i}.

4 a . The data on the compressive strength of concrete is given below:
i) Fit a straight line ii) Fit a parabola iii) Find which is better fit

Days $\left(x_{\mathrm{i}}\right)$	1	3	7	10	14	21	28
Compressive strength $\mathrm{N} / \mathrm{mm}^{2}\left(y_{\mathrm{i}}\right)$	7.2	10.5	13.2	15.6	18.1	20.3	25.2

b. Fit a curve of the form $y=a b^{x}$ for the following data. Find the shrinkage strain when $x=7.5$

Days $\left(\mathrm{x}_{\mathrm{i}}\right)$	1	2	3	4	5	6	7	8
Shrinkage strain $\left(\mathrm{y}_{\mathrm{i}}\right)$	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1

UNIT - III
5. For the following data, a \log normal distribution and proposed. Find the expected frequencies that are proposed. Conduct a Chi-square test to accept (d) reject the proposal.

Class MPa	$12-14$	$14-16$	$16-18$	$20-22$	$22-24$	$24-26$
Frequency	16	53	88	30	15	03

6. Derive the statistics of $R=f_{y} A_{s t} d\left[1-\frac{0.77 f_{y} A_{s t}}{f_{c k} b d}\right]$

$$
\begin{aligned}
& f_{y}=N[425,45] M P a \\
& f_{c k}=N[23.2,6.8] M P a
\end{aligned}
$$

Where $\quad A_{s t}=N[1500,60] \mathrm{mm}^{2}$
$b=N[230,12] \mathrm{mm}$
$d=N[450,15] \mathrm{mm}$
List the variables in the order of their contribution to randomness of ' R '.

UNIT - IV

7. Determine ' β ' by FOSM method by using the failure function,
i) $M=\frac{\pi^{2} E I}{l^{2}}-Q$
ii) $M=I-\frac{Q l^{2}}{\pi^{2} E}$
$E=N\left[2.03 * 10^{5}, 0.203 * 10^{5}\right] M P a$
Where
$Q=N\left[700 * 10^{3}, 210 * 10^{3}\right] N$

$$
\begin{aligned}
& I=N\left[12.5 * 10^{6}, 0.0625 * 10^{6}\right] \mathrm{mm}^{4} \\
& l=N[5000,150] \mathrm{mm}
\end{aligned}
$$

Check whether β is Invariant (or) not Invariant.
8. The failure function $g(x)=d-\frac{Q}{2 f_{s} t_{w}}$

$$
\begin{aligned}
Q & =N[4200,1000] N \\
f_{s} & =N[95,10] N / \mathrm{mm}^{2} \\
\text { Where } & d=N[50,2.5] \mathrm{mm} \\
\sigma_{t w} & =0, \frac{d}{t_{w}}=40
\end{aligned}
$$

Find the reliability Index ' β ' by AFOSM method. Use Harofer-Lind approach.

UNIT - V

9. A short column has a diameter X_{1} and is loaded with an axial load X_{2}. The ultimate compressive stress of column is X_{3}. The variables are normally distributed and have the following statistics.

$$
\begin{equation*}
X_{1}=N(3.5,0.4) \quad X_{2}=N(10,10) \quad X_{3}=N(2.5,0.5) \tag{20}
\end{equation*}
$$

$g(x)=\frac{\pi X_{1}^{2}}{4}-\frac{X_{2}}{X_{3}}=0$
Find ' β ' by AFOSM method using Fisseler's algorithm.
10. The strength of an axially loaded column is given by,
$R=82912.5 f_{c k}+1250 f_{y}$
Where $f_{c k}=N[19.54,4.1] \quad N / \mathrm{mm}^{2}, f_{y}=N[469,46.9] \quad N / \mathrm{mm}^{2}$ Generate the statistics of ' $R^{\prime}(n=20)$. The column is subjected to an axial load of $S=N[2100,500] k N$. Generate statistics of $(R-S)$ by Monte Carlo simulation technique. Find the probability of failure of column, by counting negative values of $(R-S)$.

