U.S.N

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M. Tech - Civil Engineering (MCAD)

Semester End Examination; Jan/Feb - 2016

Construction Project Management and Structural Optimization

Time: 3 hrs Max. Marks: 100 *Note: i)* Answer *FIVE* full questions, selecting *ONE* full question from each *unit*.

ii) Any missing data may be suitably assumed.

UNIT - I

la.	What is bar chart? What are the short comings of bar charts? How are these removed?	
-----	---	--

b. Explain Work break down structure. Prepare the Work break down structure for house 10 construction project.

2. a. Explain the terms :

10 i) Project planning ii) Project scheduling iii) Project controlling.

b. Explain the terms :

i) Job layout ii) Bar chart iii) Work break down structure.

UNIT - II

3. A project has the following time schedule :

Activity	Time in Weeks	Activity	Time in Weeks
1 - 2	4	5 - 7	8
1 - 3	1	6 - 8	1
2 - 4	1	7 - 8	2
3 - 4	1	8 - 9	1
3 - 5	6	8 - 10	8
4 - 9	5	9 - 10	7
5 - 6	4		

Construct PERT network and compute :

i) (T_E) EARLIEST TIME and (T_L) LATEST TIME for each event.

ii) Float for each activity

iii) Critical path and its duration

4. A project has the following time schedule :

Activity	Time in Months	Activity	Time in Months
1-2	2	4-6	3
1-3	2	5-8	1
1-4	1	6-9	5
2-5	4	7-8	4
3-6	8	8-9	3
3-7	5		

20

10

10

i) Construct PERT network.

ii) Compute Total Float for each activity.

iii) Critical path and its duration.

Also find the minimum number of cranes the project must have for its activities 2 - 5, 3 - 7 and 8 - 9 without delaying the project. Then, is there any change required in PERT Network? If so indicate the same.

UNIT	-	III
------	---	-----

ACTIVITY	NORMAL		CRASH	
	Time (Weeks)	Cost (Rs)	Time (Weeks)	Cost (Rs)
1 - 2	8	7000	3	10,000
1 - 3	4	6000	2	8,000
2 - 3	0	0	0	0
2 - 5	6	9000	1	11,500
3 - 4	7	2500	5	3,000
4 - 6	12	10,000	8	16,000
5 - 6	15	12,000	10	16,000
5 - 7	7	12,000	6	14,000
6 - 8	5	10,000	5	10,000
7 - 8	14	6,000	7	7,400
7 - 9	8	6,000	5	12,000
8 - 9	6	6,000	4	7,800

5. The following data pertains to a CPM network :

The project indirect cost is 1000/week.

i) Draw the network for the project.

- ii) What is the normal project length and normal project cost.
- iii) Find the optimum duration and minimum project cost.
- iv) If all the activities are crashed, what will be the project duration and corresponding cost?
- 6. Table below shows, jobs, their normal time and cost and crash time and cost for a project :

JOB	NORMAL		CRASI	
	Time (days)	Cost (Rs)	Time (days)	Cost (Rs)
1 - 2	6	1400	4	1900
1 - 3	8	2000	5	2800
2 - 3	4	1100	2	1500
2 - 4	3	800	2	1400
3-4	0	0	0	0
3 - 5	6	900	3	1600
4 - 6	10	2500	6	3500
5 - 6	3	500	2	800

20

20

P15MCAD141

10

5

5

20

Indirect cost for the project is Rs. 300 per day.

- i) Draw the network of the project
- ii) What is the normal duration cost?
- iii) If all the activities are crashed, what will be the project duration and corresponding cost?
- iv) Find the optimum duration and minimum project cost.

UNIT - IV

7 a. Obtain the set of necessary conditions for the non-linear programming problem :

 $Z = X_1^2 + 3X_2^2 + 5X_3^2,$ Maximise subject to the constraints : 10 $X_1 + X_2 + 3X_3 = 2$ $5X_1 + 2X_2 + X_3 = 5$ $X_1, X_2, X_3 \ge 0.$ 10

- b. State and prove Kuhn Tucker necessary condition in non linear programming.
- 8 a. State and prove Kuhn Tucker sufficient conditions in non linear programming.
 - b. State fire engineering applications of optimization.
 - c. Write a note on various methods of solving linear programming problems.

UNIT - V

9. Use simplex method to solve the LPP,

Maximise
$$Z = 3X_1 + 2X_2$$

subject to:
 $X_1 + X_2 \le 4$
 $X_1 - X_2 \le 2$ and $X_1, X_2 \ge 0$.

Solve the following LPP by simplex method, 10.

> $Z_{\min} = X_1 - 3X_2 + 2X_3$ subject to: 20 $3X_1 - X_2 + 2X_3 \le 7$ $-2X_1 + 4X_2 \le 12$ $-4X_1 + 3X_2 + 8X_3 \le 10.$

> > * * *