Time: 3 hrs

Max. Marks: 100

Note: i) *Answer FIVE full questions, selecting ONE full question from each unit. ii*) *Assume missing data, if any.*

UNIT - I

	UNIT - U	
c.	What are the advantages and disadvantages of Bar chart?	6
b.	What are the objectives of any project management technique?	4
2 a.	Define organization. What are the important principles of organization?	10
b.	What do you mean by a decision? What are the steps in rational decisions making?	10
1 a.	Explain the three phases of any project.	10

UNIT - II

- 3 a. State the difference between PERT and CPM.
 - b. A project has the following time schedule,

Activity	1-2	1-3	1-4	2-5	3-6	3-7	4-6	5-8	6-9	7-8	8-9
Duration (Months)	2	2	1	4	8	5	3	1	5	4	3

Construct CPM network and compute :

- i) Total float, Free float and Independent float for each activity
- ii) Critical path and in duration
- iii) Find the minimum number of cranes the project must have for in activities (2-5), (3-7) and (8-9) without delaying the project. Then, is there any change required in network, if so indicate the same.
- 4 a. A small project is composed of activities whose time estimates are listed in the Table-(1). Activities are identified by their beginning (i) and ending (j) node members.

A ativity (i i)	Estimated decision (weeks)						
Activity (i - j)	Optimistic	Most likely	Pessimistic				
1 - 2	1	1	7				
1 - 3	1	4	7				
1 - 4	2	2	8				
2 - 5	1	1	1				
3 - 5	2	5	14				
4 - 6	2	5	8				
5 - 6	3	6	15				

Table - (1)

16

6

14

P15MCAD141

i) Draw the Project Network

- ii) Find the expected duration and variance for each activity. What is the project length?
- iii) Calculate the variance and standard deviation of the project length. What is the probability that the project will be completed at least 4 weeks earlier than expected?
- iv) If the project is due in 19 weeks, what is the probability of meeting the due date?Given :

Ζ	0.5	0.67	1.00	1.33	2.0
Р	0.1915	0.2486	0.3413	0.4082	0.4772

b. Define Total float and Tree float.

b. A CPM network consists of the following Activities :

UNIT - III

- 5 a. What do you mean by resource smoothing and resource leveling? Explain with a neat sketch.
 - Duration Activity Time cost curve slope Rs./day i Node j Normal Crash 1 - 3 3 50 А 7 1 - 2 В 9 7 30 С 3 - 5 4 1 75 D 2 - 5 5 3 125 2 - 4 3 1 Е 10 F 6 4 166 5 - 6 G 2 4 - 6 1 500

12

8

8

4

4

8

Find:

i) Critical path

ii) If all normal conditions exist, total cost of all the project activities is ` 5,500.00. Indirect cost is ` 150 per day. Calculate all possible schedule and their total cost.

iii) Which is the most economical Project Duration?

- 6 a. Explain the time-cost relationship through a diagram.
 - b. What are the situations one should consider updating the network and what are the information required for updating a network?
 - c. What do you mean by resource leveling?

UNIT - IV

7 a.	State and Prove Kohn-Tucker necessary condition in non-linear programming.	10
b.	Explain the procedure for finding the saddle point in case of single variable optimization.	5
c.	Find the extreme points of $y = x^3 - 12x$.	5

P15MCAD141

- 8 a. Obtain the necessary and sufficient conditions for the optimum solution of the following : Minimize $Z = 3e^{2x_1+1} + 2e^{x_2+5}$ Subject to $y = x_1 + x_2 = 7$, $x_1, x_2 \ge 0$.
 - b. Solve the non-linear programming problem. Optimise $Z = 4x_1^2 + 2x_2^2 + x_3^3 4x_1x_2$ subject to the constraints $x_1 + x_2 + x_3 = 15$, $2x_1 x_2 + 2x_3 = 20$.

UNIT - V

9. Use simplex method to solve LPP,

$$\begin{aligned} &Maximize \ Z = 4x_1 + 10x_2 \\ &Subject \ to \ 2x_1 + x_2 \leq 50 \\ & 2x_1 + 5x_2 \leq 100 \\ & 2x_1 + 3x_2 \leq 90 \\ & x_1, x_2 \geq 0. \end{aligned}$$

10. Use revised simplex method to solve LPP,

Maximize
$$Z = 6x_1 - 2x_2 + 3x_3$$

Subject to $2x_1 - x_2 + 2x_3 \le 2$
 $x_1 + 4x_3 \le 4$
 $x_1, x_2, x_3 \ge 0.$ 20

* * *