U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, M. Tech - Computer Engineering (MCEN)
Semester End Examination; Jan - 2017
Advanced Computer Architecture

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

		UNIT - I			
1 a.	. Explain the different classes of computers.				
b.	What is ISA? Briefly explain the following dimensions of ISA:				
	i) Classes of ISA iii	Addressing modes	9		
	iii) Control flow instructions iv	Encoding ISA.			
c.	Find the number of dies per 300 mm	wafer for die that is 1.5 cm on a side.	2		
2 a.	Explain the following principles of co	mputer design:	6		
	i) Parallelism ii) Locality Princip	le iii) Focus on common case.	6		
b.	Explain Amdahl's law. Suppose that	we want to enhance a processor such that new processor			
	is 20 times faster than the old for an	application. Also assume that the original processor is	5		
	50% computation bound and 30% IO	bound. Find the overall speed up.			
c.	What is dependability? Explain the m	easures of dependability.	9		
		UNIT - II			
3 a.	Define pipelining. Explain the five sta	age pipeline for a RISC processor.	10		
b.	Describe the major hurdles of pipelin	ng-pipeline hazards (any two).	10		
4 a.	Explain the basic pipeline for MIPS.		10		
b.	Discuss the various methods for deali	ng with pipeline stalls due to branch delay.	10		
		UNIT - III			
5 a.	Explain Dynamic Branch prediction v	with example (2 bit prediction scheme).	8		
b.	Explain loop level parallelism.		4		
c.	Explain the following:		0		
	i) Data Dependences ii) Data Haz	ards.	8		
6 a.	Explain the basic structure of Tomasu	lo's based MIPS floating point unit with a diagram.	10		
b.	Explain Branch-Target Buffer with ex	ample.	10		
		UNIT - IV			
7 a.	Explain Cache Coherence protocol fo	r Write-Back cache with state diagrams.	10		
b.	Explain Flynn's model for categorizing	g all computers.	6		
c.	Draw a block diagram of centralized	shared memory multiprocessor.	4		

	P1 :	5MCEN11	
8	a.	Explain snooping protocols.	8
	b.	Explain different models of memory consistency.	12
		UNIT - V	
9	a.	Discuss the following advanced cache optimization techniques:	
		i) Small and simple caches	
		ii)Prediction	10
		iii) Trace caches	1(
		iv) Pipelined caches	
		v) Non blocking caches.	
	b.	Explain any five basic cache optimization techniques.	10
10) a.	How processes are predicted using virtual memory and virtual machines.	12
	b.	Explain Internal organization of 64-bit DRAM.	8