P15MCEN11 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, M. Tech - Computer Engineering (MCEN) Semester End Examination; Jan/Feb. - 2016 **Advanced Computer Architecture**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, Selecting ONE full question from each unit.

	UNIT-1				
1 a.	Some microprocessors tooling are designed to work adjustable voltage, so that 15% reduction				
	in voltage may result in 15% reduction in frequency. What would be the impact on dynamic	4			
	power?				
b.	Which are the implementation technologies that are critical to modern implementations?	0			
	Explain the performance trends: Bandwidth over latency.	8			
c.	Explain the quantitative principles of computer design.	8			
2 a.	Explain the different classes of computer.	8			
b.	Summarize the trends in technology, cost and power in development of computers.	8			
c.	What is dependability? Explain the measures of dependability.	4			
	UNIT - II				
3 a.	Explain the five stage pipeline for a RISC processor.	12			
b.	Explain what makes pipelining hard to implement.	8			
4 a.	Explain the MIPS pipeline is extended to handle multicycle operations and floating point				
	operations.	10			
b.	Explain the major hurdles of pipelining-pipeline Hazards.	10			
	UNIT - III				
5 a.	What is dynamic scheduling? Explain Tomasulo's algorithm. Give example.	10			
b.	With a neat diagram explain the basic structure of FP unit using Tomasulo's algorithm;				
	extended to handle speculation.	10			
6 a.	With a neat diagram explain the Pentium 4 micro architecture. Give an analysis of	12			
	performance of Pentium 4.				
b.	How many bits are in the (0, 2) branch predictor with 4k entries? How many entries are in a				
	(2, 2) predictor with the same number of bits?	4			
c.	Explain loop unrolling.	4			
	UNIT - IV				
7 a.	Explain the implementation of directory based cache coherence protocol.	10			
b.	Explain the sum T1 multiprocessor architecture.	10			

]	P15MCEN11 Page No 2			
8 a	3 a. Assume that L2 has a block size tour times that of L1. Show how a miss for an address t			
	causes a replacement in L1 and L2 can level l to violation of the inclusion property.			
t	b. What is synchronization? Explain how locks are implemented using coherence.	8		
C	e. Explain model of memory consistency.	8		
	UNIT - V			
9 a	Explain the different memory technologies. Explain how memory performance can be improved.	10		
ł	b. What are advanced optimizations of Cache Coherence? Explain any five optimizations of Cache Coherence	10		
10	a. Explain protection Via virtual memory and virtual machine.	10		
	b Explain the issues in the design of memory hierarchies. Explain how this is implemented in	10		

* * *

AMD operations.