| P15MCEN1                                                                          | 2 Page No 1                                                                                                     |    |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----|--|
|                                                                                   | U.S.N                                                                                                           |    |  |
|                                                                                   | P.E.S. College of Engineering, Mandya - 571 401                                                                 |    |  |
|                                                                                   | (An Autonomous Institution affiliated to VTU, Belgaum)<br>Second Semester, M.Tech Computer Engineering (MCEN)   |    |  |
|                                                                                   | Make-up Examination; July - 2016                                                                                |    |  |
| Time of 2 ha                                                                      | Advanced Algorithm                                                                                              |    |  |
| Time: 3 hrs     Max. Marks: 100                                                   |                                                                                                                 |    |  |
|                                                                                   | ver <b>FIVE</b> full questions, selecting <b>ONE</b> full question from each unit.<br>me missing data suitably. |    |  |
| UNIT - I                                                                          |                                                                                                                 |    |  |
| 1 a. Define th                                                                    | e asymptotic notations O, $\theta$ , $\Omega$ , o, $\omega$ .                                                   | 5  |  |
| b. Find the complexity of $T(n) = 2T(\frac{n}{2}) + n$ .                          |                                                                                                                 |    |  |
| c. Use a recursive tree to determine the upper bound of,                          |                                                                                                                 |    |  |
| $T(n) = 3T\binom{n}{4} + Cn^2$ and use the substitution method for verifications. |                                                                                                                 |    |  |
| 2 a. Illustrate                                                                   | the potential method using stack operation.                                                                     | 8  |  |
| b. Write and                                                                      | d explain merge sort with an example and analyze its complexity.                                                | 12 |  |
| UNIT - II                                                                         |                                                                                                                 |    |  |
| 3 a. Explain v                                                                    | vith an example, Aggregate analysis.                                                                            | 6  |  |

b. Write the Bellman-Ford algorithm and use it to find shortest path distance from source 'S' and to all other vertices for graph given in Fig. 3(b).



10

4

c. Find the residual network for graph given in Fig. 3(c).



Contd...2

## P15MCEN12

## Page No... 2

10

4 a. Write and apply Johnson's Algorithm to find the shortest path for graph given in Fig.4(a)



b. Write and apply matrix chain multiplication algorithm to multiply 6 matrices,
A<sub>1</sub>(30 x 35), A<sub>2</sub>(35 x 15), A<sub>3</sub>(15 x 5), A<sub>4</sub>(5 x 10), A<sub>5</sub>((10 x 20), A<sub>6</sub> ( 20 x 25) and find the 10 total number of multiplication required.

## UNIT - III

| 5 a.                               | Give the pseudo code for computing extended Euclidian. Find GCD (99, 78) using the same and                   | 10 |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------|----|--|
| show the computation of each step. |                                                                                                               |    |  |
| <b>b</b> . ]                       | Discuss the Chinese remainder Theorem. Find the solution to the equation,                                     | 10 |  |
|                                    | $A \equiv Z(mod)5$ and $a \equiv 3 \pmod{13}$ .                                                               | 10 |  |
| ба.                                | Give recursive procedure to find $n^{\text{th}}$ Fibonacci number. Find the tree for $fib(4)$ and analyze its | 10 |  |
|                                    | complexity.                                                                                                   | 10 |  |
| b.                                 | Write and apply Pollard's rho heuristic algorithm to find the factorization of 1387.                          | 10 |  |
| UNIT - IV                          |                                                                                                               |    |  |
| 7 a.                               | Give the Naïve string matching algorithm. Show how the algorithm works for pattern $P = aab$ ,                | 10 |  |
|                                    | and text $T = acaabc$ . Why this algorithm is inefficient?                                                    | 10 |  |
| b.                                 | Draw the state transition diagram for the string matching automation that accepts all strings                 | 5  |  |
|                                    | sending in the string ababaca.                                                                                | 5  |  |
| c.                                 | Differentiate between P, NP, NP Hard Problems.                                                                | 5  |  |
| 8 a.                               | Explain the working procedure of Rabin Karp string matching Algorithm and apply the same to                   |    |  |
|                                    | find pattern 3 14 1 5 in the text 2 3 5 9 0 2 3 1 4 1 5 2 6 7 3 9 9 2 1 use mod 13.                           | 10 |  |
| b.                                 | Explain polynomial verifications using do decahendron.                                                        | 10 |  |
| UNIT - V                           |                                                                                                               |    |  |
| 9 a.                               | Differentiate between probabilistic and randomized algorithms.                                                | 5  |  |
| b.                                 | Write and explain Monte Carlo algorithm for any sorting technique.                                            | 10 |  |
| c.                                 | State Amdahl's law and explain.                                                                               | 5  |  |
| 10 a.                              | Write and explain the Lasvagas algorithm to compute the area of square.                                       | 10 |  |
| b.                                 | Write randomized algorithms for linear search.                                                                | 10 |  |