

P.E.S. College of Engineering, Mandya - 571 401

U.S.N

(An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M. Tech - Computer Science and Engineering Make – up Examination; Feb - 2016 Probability and Statistics

Time: 3 hrs

Max. Marks: 100

Page No... 1

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a.	Define Probability. If a box contains 75 good IC chips and 25 defective and 12 chips are selected at random, Find the probability that at least one chip is defective.								
b.	Define the following terms :	7							
	(i) Conditional probability (ii) Independent events (iii) Mutually exclusive events.	/							
c.	. Three balls are drawn from a box containing 6 red, 4 white and 5 blue balls. Find the probability that they are drawn in order red, white and blue. If each ball is (i) Replaced (ii) Not replaced.								
2 a.	a. Define Probability mass function and Probability density function with usual notations.								
b.	Suppose a pair of fair dice are tossed and X random variable denote the sum of the two dice.(i) Obtain the probability mass function for X(ii) Construct a graph for this distribution.	8							
c.	Given the probability density function for a random variable x is,								
	$f(x) = \begin{cases} 2e^{-2x} & x \ge 0\\ 0 & x < 0 \end{cases}$	6							
	Find : (i) Commutative distribution function								
	(ii) Probability that $x > 2$								
	(iii) Probability that $-3 < x \le 4$								
	UNIT - II								
3 a.	Define : (i) Joint probability function(ii) Marginal distribution function,For both discrete and continuous random variables x and y.	6							
b.	The Joint probability function of two discrete random variables X and Y is given by $f(x, y) = c(2x + y)$ when $0 \le x \le 2$ and $0 \le y \le 3$ and $f(x, y) = 0$ otherwise								
	(i) Find c ii) Find $P(X \ge 1, Y \le 2)$ iii) Find $P(X = 2, Y = 1)$								
	(iv) Find the marginal distribution functions of X								
C	Find the probability in a family of 4 children. There will be,								
с.	(i) atleast one boy (ii) atleast one boy (iii) atleast one body and atleast one girl.								
	Assume that probability of a male birth is $\frac{1}{2}$.	5							
4 a.	Find mean and Variance :	10							
	(i) Binomial Distribution (ii) Poisson distribution.								
b.	. If the probability of a bad reaction from a certain injection is 0.001 determine the chance that out of 2000 individuals more than two will get a bad reaction.								
c.	c. Write short notes on computation of mean time to failure.								

Contd....2

P15MCSE11

Page No... 2

UNIT - III

5 a. A computer center has two computer systems labeled A and B. Incoming jobs are independent routed to system A with probability P and to system A with probability $(1-p)$. The number of the probability $(1-p)$.										of.	
	jobs X arri of number	distributio	on function	10							
b.	Write shor	t notes on :								10	
	(i) Reliabil	ity and imp	perfect faul	t coverage		(ii) Rando	om sums.			10	
6 a.	Define sto	chastic proc	cess and its	classificat	tions.					10	
b.	Consider a computer system with Poisson job-arrival stream at an average rate of 70% per hour. Determine the probability that time interval between successive job arrival is,							10			
	(i) longer than four minutes (ii) shorter than eight minutes (iii) between 3 and 6 minutes										
					UNIT - IV						
7 a.	a. Explain what is transition probability matrix and when it is called stochastic matrix and when it is called stochastic matrix.										
b.	Write shor	t notes on f	ollowing te	erms :						10	
	(i) Limitin	g distributi	ons (ii) Di	istribution	of times be	tween state	e (iii) A	channel di	agram.	10	
8 a.	a. Assume that a computer system is in one of three states; busy, idle or undergoing repair, respectively denoted by states, 0, 1 and 2. Observing its approximately behaves like a homogeneous Markov chain with transition probability matrix.										
	$P = \begin{bmatrix} 0.6\\0.1\\0.6 \end{bmatrix}$	$ \begin{bmatrix} 0.2 & 0.2 \\ 0.8 & 0.1 \\ 0.0 & 0.4 \end{bmatrix} $								10	
	Prove that	the chain is	s irreducibl	e and find	the steady	state proba	bilities.				
b.	b. Distinguish between open queing and closed queing networks.										
c. (i) Pure Birth Processes (ii) Pure Death processes										4	
	(iii) With c	constant Ra	te (iv) with line	ar rate					4	
					UNIT - V						
9 a.	Define stat	istic, Estim	ator, unbia	sed function	on in a Ran	dom sampl	e of size n			6	
b.	Let X den main mem	ote the ma ory of a con	•	-	•		tion of the	total user	allocatable		
	$f(x) = \begin{cases} (k+1)x^k & 0 < x < 1, \ k > 0 \\ 0 & otherwise \end{cases}$ Find the estimate K.							6			
c.	c. An examination was given to two classes consisting of 40 and 50 students respectively. In first class the mean grade was 74 with standard deviation of 8 while in the second class 78 mean and 7 is the standard deviation. If there a significant difference between the performance of two classes a level of significance of, (i) 0.05 (ii) 0.01										
10 a.	Fit a least-	square para	abola havir	ng the $y = x$	$a+bx+cx^2$	in to the d	lata given				
	x	1.2	1.8	3.1	4.9	5.7	7.1	8.6	9.8	10	
	<u>у</u>	4.5	5.9	7	7.8	7.2	6.8	4.5	2.7		
b.		t notes on t	he followir	ng terms: ((i) Null hyp		(ii) alterna	te hypothes	sis	4.0	
		mathematic		•						10	

* * *