P15MCSE12			Page No 1							
Tanana otta agai	U.S.N									
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum)									
First Semester, M.Tech - Computer Science and Engineering (MCSE)										
Semester End Examination; Jan/Feb 2016										
Advanced Algorithms										

Time: 3 hrs

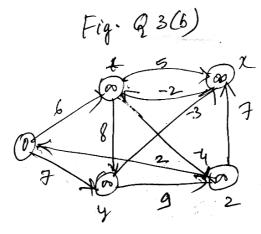
Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. List out the various asymptotic notation for classifying the growth function. Discuss them with respect to tight bound, upper bound and lower bound.
 - b. Obtain the order of complexity of the following recurrence relations,

(i)
$$T(n) \leq 3T\left(\lfloor \frac{n}{4} \rfloor\right) + cn^2$$
 (ii) $T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n)$ 10


2 a. Define master's theorem. Using the same the obtain the order of complexity of following recurrences,

(i)
$$T(n) = 8T\binom{n}{2} + \theta(n^2)$$
 (ii) $T(n) = 2T\binom{n}{2} + n \log n$

b. With an illustrative example, discuss how the substitution method can be used to solve 10 recurrences.

UNIT - II

- 3 a. Which are the two key ingredients required for an optimization problem to be solved using dynamic programming. Briefly discuss their significance in the solution methodology.
 - b. Obtain the single source shortest path for the graph using Bellman-Ford algorithm.

- 4 a. With the help of an algorithm, discuss the working of Johnson algorithm for finding the pair shortest path.
 - b. List out the common techniques used in Amortized analysis. Explain any one in detail.

10

10

8

10

10

Page No... 2

P15MCSE12

UNIT - III

5 a.	What is the various performance measures used to study the efficiency of the multithread	10				
	algorithm? Discuss the impact of using various schedulers on the efficiency.					

- b. With the help of an algorithm, discuss the working of Miller-Robin randomized primality test algorithm.
- 6 a. Discuss the steps involved in RSA crypto system. Prove the correctness of the same.
 - b. With the example of computing Fibonacci using recursion, discuss the adaption dynamic 10 multithreading to achieve parallelism is given problem.

UNIT - IV

- 7 a. With the help of an algorithm discuss the working of Knuth-Morris-Pratt string matching algorithm.
 - b. Discuss how a Hamiltonian problem can be made NP-complete using verification approach. 10
- 8 a. Given the state transition table, constant a string matching automata and demonstrate it for the given input text T = abababacaba and the pattern p = ababaca

State	I/p					
State	а	b	с			
0	1	0	0			
1	1	2	0			
2	3	0	0			
3	1	4	0			
4	5	0	0			
5	1	4	6			
6 7		0	0			
7	1	2	0			

b. What is a dique problem? Prove that it is NP-complete.

UNIT - V

- 9 a. Discuss the working Monte-Carlo algorithm for primality testing.
 - b. List out the various parallel algorithm models. Discuss the PRAM model for computing matrix 10 multiplication.
- 10 a. Write short notes on :
 - (i) Network model10b. Write a note on :10
 - (i) Randomizing Quicksort (ii) Las Vegas Algorithm.

10

10

10

10