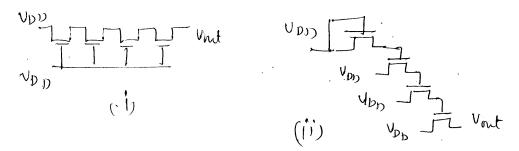
U.S.N					


P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, M. Tech – VLSI Design and Embedded System (MECE)
Semester End Examination; Jan - 2017
CMOS VLSI Design

Time: 3 hrs Max. Marks: 100

Note	e: Answer FIVE full questions, selecting ONE full question from each unit.				
UNIT - I					
1 a. Analyze the second order effect on IC performance with respect to,					
	i) Sub threshold conduction ii) Tunneling iii) Punch through effect.	6			
b.	With VTC, explain the impact of variations in $\boldsymbol{\beta}$ values by considering CMOS inverter.	6			
c.	Explain the working of differential inverter with circuit diagram and transfer characteristics.	8			
2 a.	Obtain the small signal equivalent of MOSFET and the corresponding expression for g .	8			
b.	Derive an expression for NM_L and NM_H .	7			
c.	Realize the schematic of tristate inverter and BiCMOS inverter.	5			
	UNIT - II				
3 a.	Explain the steps of fabrication process of NMOS technology.	9			
b.	Show that the delay time and transit time are interchangeable [consider sum technology].	6			
c.	Realize the CMOS schematic and the corresponding stick diagram of NOR ₃ gate.	5			
4 a.	Obtain the scaling factors for the following parameters;	6			
	i) Operating frequency ii) Power dissipation iii) Switching energy.	U			
b.	Derive an expression for delay in driving a large capacitance load in a chain of inverters with	8			
	varying sizes.	O			
c.	Realize the symbolic diagram of NAND ₂ gate and NOR ₂ .	6			
	UNIT - III				
5 a.	Realize the function using transmission gates (TG),	6			
	i) $F = \overline{A} + AB + A\widehat{B}C$ ii) $F = A\overline{B} + \overline{A}BC + AB\overline{C}$.	O			
b.	Discuss the cascading problem in Dynamic logic circuit using schematic and waveform.	6			
c.	Explain the boot strapping principle and derive an expression for C_{boot} .	8			
6 a.	Obtain the Euler path for the function $F = \overline{A(D+E)+BC}$.	6			
b.	With gate level, CMOS schematic and waveform, explain SR latch (NOR based).	10			
c.	Find the output voltage for the following arrangements. Given $V_{DD} = 3.8 \ V, \ V_{Tn} = \ 0.7 \ V.$	4			

UNIT - IV

7	a.	With necessary diagram and expression, explain the working of differential amplifier.	10
	b.	Derive an expression for V_{REF} using Band gap reference concept.	10
8	a.	Explain the concept of current mirrors along with an example.	10
	b.	Explain the principle of band gap reference. Write the expression for $V_{\text{REF.}}$	10
		UNIT - V	
9	a.	List the causes and remedies for latch-up in CMOS inverter.	10
	b.	Explain the charge sharing phenomenon with an example.	6
	c.	Briefly discuss the H-tree and Buffered clock distribution network.	4
10) a.	Explain latch up in CMOS inverter with necessary diagrams.	8
	b.	With a neat diagram, explain Domino logic concept.	6
	c.	Discuss any three clock generating technique.	6

* * *