P1	5MECE143 <i>Page No 1</i>	
(E)		
are de	P.E.S. College of Engineering, Mandya - 571 401	
ALL ALL	(An Autonomous Institution affiliated to VTU, Belgaum)	
	First Semester, M. Tech VLSI Design and Embedded Systems (MECE)	
	Make-up Examination; Feb -2017 Digital System Designing Using Verilog	
Ti	me: 3 hrs Max. Marks: 100	
No	<i>te</i> : <i>i</i>) Answer <i>FIVE</i> full questions selecting <i>ONE</i> full question from each unit. <i>ii</i>) Assume suitable missing data if any.	
	UNIT - I	
1 a.	Develop a sequential circuit with a single data input's' and single data output '1'. The output	
	is 1 when the input value in the current clock cycle is different from input value in the	6
	previous clock cycle. Describe also the timing diagram.	
b.	Explain the capacitive load and propagation delay.	4
c.	Discuss the design methodology for an embedded system with block diagram.	1
2 a.	Develop a verilog model for the burglar alarm to be priority encoder with zone 1 having	1
	highest priority zone 8 having lowest priority.	1
b.	Explain axioms of Boolean Algebra and also prove the absorption laws using only the	1
	axioms.	1
	UNIT - II	
3 a.	Develop a verilog model of a code converter to convert 4 bit gray code to 4 bit unsigned	1
	binary integer.	1
b.	Describe IEEE standard 754 floating point formats.	1
4 a.	Design a circuit for a modulo 10 counter and also develop a verilog model.	1
b.	Explain clock synchronous timing methodology with relevant diagram.	1
	UNIT - III	
5 a.	Explain multiport memories. Develop a verilog model of a dual port 4K x 16 bit flow	
	through synchronous SRAM. One port allows data to be written and read while other port	8
	allows only data to be read.	
b.	Compute 12 bit ECC word corresponding to 8 bit data word 01100001.	Ζ
c.	Explain the difference between synchronous and asynchronous static RAM using timing	ć
	diagram.	8
ба.	Describe I/O block of an FPGA with neat schematic.	e
b.	Explain programmable array logic with example.	1
c.	Describe differential signalling. How does it improve noise immunity?	4

Contd.....2

P15	5MECE143 Page No 2			
UNIT - IV				
7 a.	Develop a verilog model to determine greater of Value-1 and Value-2.	10		
b.	Describe instruction encoding of Gumnut processor.	10		
8 a.	Explain the working of 3 bit R string DAC.	8		
b.	Explain different serial interface standards.	12		
UNIT - V				
9 a.	Explain Kernel of an algorithm. If Kernel of an algorithm is accelerated by a factor of 100			
	and Kernel accounts for 90% of execution time before acceleration, what is overall speed	4		
	up?			
b.	Describe briefly video edge detection using Sobel convolution mask. Write a Sobel edge	0		
	detection algorithm.	8		
c.	Develop a verilog model for Sobel accelerates bus slave interface.	8		
10 a.	Explain different optimization techniques in design methodology.	10		
b.	Discuss built in self test technique.	10		

* * *