
P15MECE151	Page No 1									
U.S.N										
P.E.S. College of Engineeri (An Autonomous Institution affi	<u> </u>				/			40	1	
First Semester, M. Tech. – Electronics and					0		·	nee	ring	
(VLSI Design and Embedd	ed	Sys	ten	ıs)						
Semester End Examination; J	an	/Fe	b -	201	6					
ASIC Design										
Time: 3 hrs					N	Iax.	Mc	ırks	: 10	0

Note: Answer *FIVE* full questions selecting *ONE* full question from each unit.

UNIT - I

UNIT - II						
c.	Define ASIC and give two examples for non – ASIC and ASICs.	4				
b.	What does each ASIC cell contains when ASIC cell libraries are designed, explain each of them in detail.	10				
2 a.		6				
b.	Discuss are the advantages and disadvantages with the use FPGA and full custom ASIC.	8				
1 a.	What are the sequences of steps used to design an ASIC? Draw the flow diagram for the ASIC design. Also, comment on logical and physical design.	12				

- 3 a. Construct a 16-bit carry select adder dividing into M = 4 blocks, with each block containing P = 4 adder cells in series. How do you obtain completion time T for the 8 overall carry output signal?
 - b. Recode the binary number B = 00010111 as CSD vector D. 6
 - c. What are the ways to model capability of an I/O cell to withstand EOS? Explain them briefly.
- 4 a. Determine the optimum path delay for the logic cascade chain shown in Fig. Q 4(a). Also, compute the input capacitances C2, C3 and C4. Ignore p and q of each stage. Given the logical ratio, r = 2, C1 = 1 pF and C_{out} = 5 pF.

b. Consider multistage AOI221 logic cell with each input driven by a minimum size inverter and the output inverter has IX drive strength, logic ratio = 1.5.

Z(A, B, C, D, E) = NOT (NAND (NAND(A,B), AOI21(C,D,E)))

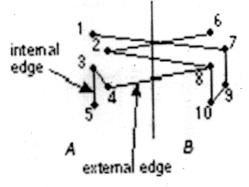
10

6

Contd.....2

P15MECE151

i) Calculate the delay from input A to output Z.


ii) Reduce the size of two NAND cells used in multi-cell implementation of an AOI221 without sacrificing speed.

UNIT - III

5 a.	What is the need for hierarchical design? With suitable example explain the hierarchical design. Also explain how to label the nets in the hierarchical design.	11					
b.	What are the difficulties of using ASIC schematic libraries? Briefly describe them.	4					
c.	Name the two types of macros and programmable ASIC. Explain them.	5					
6 a.	What is netlist screener? List the errors that can be found by it and explain them.	12					
b.	What you mean by Back-annotation? Explain in detail the need for it.	8					
UNIT - IV							
7 a.	Illustrate how 2:1 MUX can be used as the function generator.	6					
b.	Compare Actel ACT1, Xilinx XC3000, and Altera FLEX programming logic cells with respect to basic logic cell, logic cell contents, logic cell delay, interconnected delay, Flip – flop (FF) implementation.	9					
c.	What are ways of optimization performed during logic synthesis? Describe them.	5					
8 a.	Describe with the help of block diagram the Xilinx XC4000 IOB.	8					
b.	Write the hierarchical nature of an EDIF file.	4					
c.	Explain the CFI connectivity model defined using Express – G language with an example.	8					
	TINITIN X7						

UNIT - V

9 a. For the network graph, show in Fig. Q 9(b), apply KL algorithm to minimize the external edges. What are the problems or limitations of using KL algorithm for system partitioning? How can they be overcome?

Fig. Q 9(b)

b. What is the need of methods and algorithms in CAD tool designing? Briefly discuss the types of algorithms/functions used to reduce complexity.

8

12

P15MECE151

- 10 a. Analyse the high tower area routing steps with an example.
 - b. An ASIC chip has 40000 Flip-flops with input capacitance of clock input to each Flip-flop is 0.025 pF with clock frequency of 200 MHz, chip size of 20 mm on a side and clock spine consists of 200 lines across the chip with interconnect capacitances of 2 pF/cm and Vdd of 3.3 V, calculate :

i) Number of stages to drive the clock spine.

- ii) Power dissipated while charging the input capacitance of Flip-flop.
- iii) Power dissipated while driving clock spine.
- c. Illustrate the different iterative placement improvement algorithm with examples.

* * *

5