U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, M. Tech – VLSI Design and Embedded System (MECE) Semester End Examination; Dec - 16/Jan - 2017 VLSI Testing and Verification

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

		UN11 - 1	
1 a		Briefly discuss the VLSI technology trends affecting testing as complexity in the design	10
		increases.	10
ł	э.	Describe bridging faults in digital circuits.	4
(Э.	Explain Digital and Analog VLSI testing in digital circuits.	6
2 a	a.	List the fault models used in recent technology. Explain $S-a-1$ on one of the input of $NAND_2$ gate.	6
ł	Э.	Discuss the effect of probable bridging fault in NOR ₂ gate with CMOS schematic and truth table.	8
(Э.	Realize $F = x_1x_2 + x_3x_4$ and find the Boolean difference with respect to x_3 .	6
		UNIT - II	
3 8	ı.	Explain the term controllability and observability with relevant diagrams.	6
ł	э.	Analyze the clocked hazard free latches used in Level-Sensitive Scan Design (LSSD).	10
(Э.	Obtain the diagram of 4-bit LFSR for the polynomial $P(x) = x^3 + x + I$ of degree 3.	4
4 8	ı.	Discuss the AD-HOC design rules to improve terlability.	4
ł	э.	Discuss the architecture of boundary scan.	10
(Э.	Realize the block diagram of circular flip flop using circular BIST architecture.	6
		UNIT - III	
5 a	a.	Discuss the RAM organization with neat block diagram.	12
ł	э.	Analyze the equivalence checking paths of 2 models employed in formal verification.	8
6 a	a.	Explain the proposed BIST technique for testing embedded RAM with block diagram.	12
ł	э.	Discuss the black-box and white-box functional verification approaches.	8
		UNIT - IV	
7 a	1.	Analyze the behaviour of XOR gate using event-driven simulation when One i/p or Both i/p change.	8
ł) .	Along with flow diagram, explain levels of verification.	12

P15MECE31 Page N	o 2		
8 a. Explain the cycle-base simulation employed for synchronous circuit.	8		
b. Discuss:	12		
i) Hardware modules ii) Verification intellectual property iii) Waveform views.	12		
UNIT - V			
9 a. Explain the basic functionality of static timing analysis along with flow diagram.	10		
b. Analyze the min and max timing paths in clocking employed to EXOR gate.	6		
c. Briefly explain layout rule checks.			
10 a List out (any five) limitations of static timing analysis.			
b. Write a note on parasitic extraction.	4		
c. Briefly explain electrical rule checks.	6		