P15MMDN11 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, M. Tech - Mechanical Engineering (MMDN) Semester End Examination; Jan/Feb - 2016 **Advanced Machine Design**

Time: 3 hrs Max. Marks: 100

Note: i) Answer *FIVE* full questions, selecting *ONE* full question from each *unit*.

- ii) Missing data may be suitably assumed.
- iii) Use of Design data handbook is permitted.

UNIT - I

- 1 a. Discuss role of failure prevention analysis in mechanical design.
 - b. Compare and discuss MNST, MSST, and DET with experimental data.
 - c. Based upon the distortion energy theory, determine the safety factor for points A and B. The Bar is made of AISI 1006 cold drawn steel ($S_v = 280$ MPa) and it is loaded by the forces, F = 0.55 kN, P = 8.0 kN and T = 30 N-m.

- Explain in detail the following fatigue design criteria:
 - (i) Safe-life design
- (ii) Fail-safe design
- b. With a neat sketch explain how fatigue test is carried out on a rotating pure bending machine.

UNIT-II

- 3 a. Explain compressive and tensile mean stress effect on aluminium alloys and steels.
 - b. Explain in detail the influence of the following factors on S-N behavior,
 - (i) Microstructure (iii) Surface finish
- (ii) Size effects
- (iv) Frequency
- 4 a. Explain fatigue life estimation using S-N approach.
 - b. Explain the following cycle counting methods:
 - (i) Peak counting method
- 10
 - (ii) Rain flow method

10

10

10

10

10

4

6

UNIT - III

5 a.	Explain the following:					
	i) True stress and true strain	ii) Cyclic hardening	10			
	iii) Baushinger effect	iv) Stable cyclic stress-strain- hysteresis loop	10			
	v) Monotonic and cyclic stress-strain cur	ve for 2024 - T4 aluminium.				
b.	. Explain with sketches the stress-strain behaviour of fully annealed, partially annealed and cold-worked copper subjected to cyclic strain controlled axial loads.					
6 a.	Explain with a sketch strain based approach to life estimation.					
b.	Explain with sketches the effect of mean	stress and surface finish on strain life behavior.	10			
		UNIT - IV				
7 a.	Discuss in detail the effect of the following	ng on fracture toughness,				
	i) Specimen thickness		14			
	ii) Temperature		14			
	Draw neat sketches.					
b.	Write a note on fatigue crank growth, da/	dN - ΔK and explain with a sketch, the effect of stress	6			
	levels as fatigue crack length.		U			
8.	A very wide SAE 1020 cold-rolled twi	n plate is subjected to constant amplitude uniaxial				
	cyclic loads that produce nominal stresse	es varying from S_{max} = 200 MPa to S_{min} = - 50 MPa.				
	The monotonic properties for this steel	are $S_y = 630$ MPa, $S_u = 670$ MPa. $E = 207$ GPa,				
	and $K_c = 104MPa\sqrt{m}$. What fatigue life v	would be attained if an initial through thickness edge	20			
	crack existed and was 1mm in length?					
	If $R = 0.33$, $S_{max} = 300$ MPa, and $S_{min} = 1$	00 MPa. What fatigue life is attained given the same				
	initial crack size? Take; $A = 6.9 \times 10^{-12} \text{ m/s}$	cycle and $n = 3$.				
		UNIT - V				
9 a.	Explain the effect of stress level on notch	factor.	10			
b.	Explain mean stress effects and Haigh diagram.					
10.	Explain Neuber's and Glinka's rule.					