
Time: 3 hrs

Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Missing data may be suitably assumed. iii) Use of Design data handbook is permitted.

UNIT - I

- Discuss role of failure prevention analysis in mechanical design.
 Compare and discuss MNST, MSST, and DET with experimental data.
 - c. Based upon the distortion energy theory, determine the safety factor for points A and B. The Bar is made of AISI 1006 cold drawn steel ($S_y = 280$ MPa) and it is loaded by the forces, F = 0.55 kN, P = 8.0 kN and T = 30 N-m.

2 a. Explain in detail the following fatigue design criteria :

(i) Safe-life design (ii) Fail-safe design

b. With a neat sketch explain how fatigue test is carried out on a rotating pure bending machine. 10

UNIT - II

3 a.	Explain compressive and tensile mean stress effect on aluminium alloys and steels.		
b.	Explain in detail the influence of the following factors on S-N behavior,		
	(i) Microstructure	(ii) Size effects	10
	(iii) Surface finish	(iv) Frequency	
4 a.	Explain fatigue life estimation using S-N approach.		
b.	Explain the following cycle counting methods :		
	(i) Peak counting method		10
	(ii) Rain flow method		

10

P15MMDN11

5 a. Explain the following :

Page No... 2

UNIT - III

	i) True stress and true strain	ii) Cyclic hardening	10			
	iii) Baushinger effect	iv) Stable cyclic stress-strain- hysteresis loop	10			
	v) Monotonic and cyclic stress-strain curve for 2024 - T4 aluminium.					
b.	. Explain with sketches the stress-strain behaviour of fully annealed, partially annealed and					
	cold-worked copper subjected to cyclic strain controlled axial loads.					
6 a.	Explain with a sketch strain based approach to life estimation.					
b.	Explain with sketches the effect of mean	stress and surface finish on strain life behavior.	10			
UNIT - IV						
7 a.	a. Discuss in detail the effect of the following on fracture toughness,					
	i) Specimen thickness		14			
	ii) Temperature					
	Draw neat sketches.					
b.	b. Write a note on fatigue crank growth, da/dN- ΔK and explain with a sketch, the effect of stress					
	levels as fatigue crack length.		6			
8.	A very wide SAE 1020 cold-rolled twin plate is subjected to constant amplitude uniaxial					
	cyclic loads that produce nominal stresses varying from S_{max} = 200 MPa to S_{min} = - 50 MPa.					
	The monotonic properties for this steel are $S_y = 630$ MPa, $S_u = 670$ MPa. E = 207 GPa,					
	and $K_c = 104 MPa \sqrt{m}$. What fatigue life	would be attained if an initial through thickness edge	20			
	crack existed and was 1mm in length?					
	If $R=0.33,S_{max}\!=300$ MPa, and $S_{min}\!=$	100 MPa. What fatigue life is attained given the same				
	initial crack size? Take; $A = 6.9 \times 10^{-12}$ m/cycle and $n = 3$.					
UNIT - V						
9 a.	Explain the effect of stress level on notch	factor.	10			
b.	Explain mean stress effects and Haigh dia	agram.	10			
10.	Explain Neuber's and Glinka's rule.		20			

* * *