Time: 3 hrs

Max. Marks: 100

5

7

8

10

Page No... 1

Note: *i*) *Answer FIVE full questions*, *selecting ONE full question from each unit*. ii) Assume missing data, if any. iii) Use of Design data hand book/charts is permitted.

UNIT - I

Semester End Examination; Jan - 2017 **Advanced Machine Design**

- List at least ten modes of mechanical failure. 1 a.
 - b. With the help of Mohr's circles, distinguish between even and uneven materials.
 - Discuss in detail the fatigue mechanisms and microscopic features. c.
- 2 a. Discuss the modified Mohr theory with the help of biaxial fracture data of gray cast iron.
- b. Calculate the safety factor for the bracket shown in Fig. Q2b. Using the Coulomb-Mohr and the modified Mohr effective stress theories. Assume a brittle material strength of $S_{ut} = 350 MPa$ and $S_{uc} = 1000 MPa$.

UNIT - II

3 a. Discuss the influence of the following factors on S-N behavior ;

(i) Microstructure (ii) Size (iii) Surface finish (iv) Frequency.

- b. Discuss Palmgren-Miner linear damage rule.
- 4 a. An un-notched circular rod with a diameter of 10 mm is subjected to constant amplitude bending at room temperature, with $S_m = 200$ MPa. The material is 4340 quenched and tempered alloy steel with $S_u = 1240$ MPa, $S_y = 1170$ MPa and $S_y^1 = 1000$ MPa. Take 10 $S_f = 0.5 S_u$ and surface correction factor = 0.87. Estimate the values of S_a , S_{max} , S_{min} and R for a median fatigue life of 50,000 cycles. Verify whether yielding occurs or not.
- b. Discuss rain flow cycle counting method.

10

12

8

P15MMDN11

UNIT - III

5 a.	Explain with a neat sketch, strain-controlled testing conducted on a servo-controlled closed	10
1	loop testing machine.	
b.	Discuss cyclic stress-strain behavior of Copper subjected to cyclic strain controlled axial	10
	loads (fully annealed, partially annealed and cold worked copper).	
6 a.	Discuss strain based approach to life estimation.	10
b.	Describe in detail the determination of strain-life fatigue properties.	5
c.	Discuss mean stress effects in strain controlled cyclic testing.	5
UNIT - IV		
7 a.	Sketch and explain modes of crack extension.	6
b.	Explain the following :	
	(i) Stress intensity factor (ii) Energy release rate.	4
c.	Sketch and explain crack tip plastic zone for mode I using the von mises criterion and	10
	Dugdale plastic zone strip model.	10
8 a.	Sketch and explain sigmoidal d_a/d_N - Δk curve.	10
b.	A very wide SAE 1020 cold rolled thin plate is subjected to constant amplitude uniaxial	
	cyclic loads that produce nominal stress varying from S_{max} to S_{min} which results in stress	
	range $\Delta s = 200$ MPa. The monotonic properties for this steel are $S_y = 630$ MPa,	
	$S_u = 670$ MPa, E = 207 GPa, and $K_c = 104$ MPa \sqrt{m} , $S_{max} = 200$ MPa. What fatigue life	10
	would be attained, if an initial through-thickness edge crack existed and was 3 mm in	
	lengths? Take A = 6.9×10^{-12} m/cycle and $n = 3$.	
UNIT - V		
9 a.	Sketch and explain the construction of Haigh diagrams.	10

b. Describe in detail the notch stresses and strain concentration factors.1010. Discuss Neuber's rule and Glinka's rule.20

* * *