

Fig. Q $3(c)$

6

10

P15MMDN12 *Page No... 2*

4 a. For the triangular element shown in Fig. Q4(a), the nodal displacement are given by,

 $u_1 = 0.005$ mm; $u_2 = 0.00$ mm; $u_3 = 0.005$ mm; $v_1 = 0.002$ mm; $v_2 = 0.00$ mm; $v_3 = 0.00$ mm; $3(10, 25)$ $2(20, 10)$ $1(10, 10)$ All coordinates are in mm

Fig. $Q_4(a)$

Determine the strain-displacement matrix, B and hence calculate element strain ϵ_x , ϵ_y , γ_{xy} .

b. Derive shape functions for 4-noded Tetrahedral element. 10

UNIT - III

5. Derive strain-displacement matrix for an axi-symmetric triangular element and hence obtain strain-displacement matrix of axi-symmetric element shown in Fig. Q5.

All coordinates are in mm

Fig. Q 5

6. For the truss structure shown in Fig. Q6. Determine the nodal displacements, stress in member-1 and reaction at support 3.

Fig. Q 6

UNIT - IV

7 a. Write Harmite shape functions of a 2-noded beam element and draw their variation along the element.

6

P15MMDN12 *Page No... 3*

 b. For the beam shown in Fig. Q 7(b), determine the nodal deflections, slops and the vertical deflection in the mid-point of distributed load. Use two element approximation and take $E = 70 \text{ GPa}, I = 3 \times 10^{-4} \text{ m}^4.$

Fig. Q 7(b)

- 8 a. Write consistent mass matrix of plane truss and CST elements. 4
- b. A one-dimensional bar of length L, modulus of elasticity E, mass density ρ and cross sectional area A is fixed at one end and free at other end. Determine its first two natural frequencies using two elements of equal length. 16

UNIT - V

- 9 a. Discuss the types of boundary conditions used in heat transfer problems. 6
- b. Inner surface temperature of a composite wall shown in Fig. 9(b) is maintained at 20ºC. The convective heat transfer takes place at outer surface with h = 25 W/m² °C and T_∞ = -15°C. Determine temperature distribution in the wall.

$$
T_o = 20^o
$$

\nK₁ = 20W / m^oC
\nK₂ K₃ K₁ = 20W / m^oC
\nK₁ = 20W / m^oC
\nK₂ = 30W / m^oC
\nK₃ = 50W / m^oC
\nh = 25W / m^{2o}C
\nh = 25W / m^{2o}C
\nT_∞ = -15^oC

$$
Fig. Q9(b)
$$

10. Fig.Q10 shows a uniform aluminum fin of diameter 20 mm. The root (left end) of the fin is maintained at a temperature of $T_0=100$ °C while convention takes place from the lateral (circular) surface and the right (flat) edge of the fin. Assuming $K = 200$ *W/m ^oC*, *h* = 1000 *W/m²* ^o *C* and T_∞ = 20°C, determine the temperature distribution in the fin using a two-element idealization. 20

Fig. Q 10

* * *

14