P15MMDN12 Page No 1		
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M. Tech - Mechanical Engineering (MMDN) Semester End Examination; Jan - 2017 Finite Element Method		
Ti	me: 3 hrs Max. Marks: 100	
No	<i>te</i> : <i>i</i>) Answer FIVE full questions, selecting ONE full question from each unit. <i>ii</i>) Assume missing data, if any.	
	UNIT - I	
1 a.	Discuss in brief the basic steps involved in FEM.	6
b.	With necessary sketches, differentiate between essential and non-essential boundary conditions.	6
c.	Derive an expression for potential energy functional of 3D elastic body is subjected to body force, surface force and point load components in its x , y and z directions.	8
२ ०		6
2 a.	Derive shape functions for a 2-noded bar element.	0
b.	For the stepped bar shown in Fig. Q2(b),	
	$\begin{array}{c} 1 \\ \hline 1 \\ \hline 2 \\ \hline 5 \text{ kN} \\ \hline \\ 1000 \text{ mm} \\ \hline 750 \text{ mm} \\ \hline \\ A_1 = 500 mm^2; A_2 = 400 mm^2 \\ E_1 = 100 GPa; E_2 = 200 GPa \end{array}$	14
	Fig. Q 2(b)	
	Determine the following :	
	(i) Element stiffness matrices (ii) Nodal displacements (iii) B Matrices	
	(iv) Stresses in each elements (v) Support reaction.	
	UNIT - II	
3 a.	Derive shape functions for 3-noded triangular element.	8
b.	With necessary sketches, explain the concept of ISO, Sub and Super parametric elements.	6
c.	Obtain the Jacobean matrix for the triangular element shown in Fig. Q3(c). Also determine	
	the area of triangular element.	

Fig. Q 3(c)

6

Page No... 2

P15MMDN12

4 a. For the triangular element shown in Fig. Q4(a), the nodal displacement are given by,

 $u_{1} = 0.005 \text{ mm}; \quad u_{2} = 0.00 \text{ mm}; \quad u_{3} = 0.005 \text{ mm};$ $v_{1} = 0.002 \text{ mm}; \quad v_{2} = 0.00 \text{ mm}; \quad v_{3} = 0.00 \text{ mm};$ $u_{1} = 0.002 \text{ mm}; \quad v_{2} = 0.00 \text{ mm}; \quad v_{3} = 0.00 \text{ mm};$ $u_{1} = 0.002 \text{ mm}; \quad v_{2} = 0.00 \text{ mm}; \quad v_{3} = 0.00 \text{ mm};$ $u_{1} = 0.002 \text{ mm}; \quad v_{2} = 0.00 \text{ mm};$ $u_{3} = 0.00 \text{ mm};$ $u_{4} = 0.002 \text{ mm}; \quad v_{2} = 0.00 \text{ mm};$ $u_{3} = 0.00 \text{ mm};$ $u_{4} = 0.002 \text{ mm}; \quad v_{2} = 0.00 \text{ mm};$ $u_{3} = 0.00 \text{ mm};$ $u_{4} = 0.002 \text{ mm};$ $u_{3} = 0.00 \text{ mm};$ $u_{4} = 0.002 \text{ mm};$ $u_{4} = 0.002 \text{ mm};$ $u_{4} = 0.002 \text{ mm};$ $u_{5} = 0.002 \text{ mm};$ $u_{6} = 0.002 \text{ mm};$ $u_{7} = 0.002 \text{ mm};$ $u_{8} = 0.002 \text{ mm};$ $u_{1} = 0.002 \text{ mm};$ $u_{1} = 0.002 \text{ mm};$ $u_{2} = 0.00 \text{ mm};$ $u_{3} = 0.000 \text{ mm};$ $u_{4} = 0.002 \text{ mm};$ $u_{5} = 0.002 \text{ mm};$ $u_{6} = 0.002 \text{ mm};$ $u_{6} = 0.002 \text{ mm};$ $u_{1} = 0.002 \text{ mm};$ $u_{4} = 0.002 \text{ mm};$ $u_{5} = 0.002 \text{ mm};$ $u_{6} = 0.002 \text{ mm};$ $u_{6} = 0.002 \text{ mm};$ $u_{1} = 0.002 \text{ mm$

Fig. Q 4(a)

Determine the strain-displacement matrix, B and hence calculate element strain ε_x , ε_y , γ_{xy} .

b. Derive shape functions for 4-noded Tetrahedral element.

UNIT - III

5. Derive strain-displacement matrix for an axi-symmetric triangular element and hence obtain strain-displacement matrix of axi-symmetric element shown in Fig. Q5.

All coordinates are in mm

Fig. Q 5

6. For the truss structure shown in Fig. Q6. Determine the nodal displacements, stress in member-1 and reaction at support 3.

Fig. Q 6

UNIT - IV

7 a. Write Harmite shape functions of a 2-noded beam element and draw their variation along the element.

6

10

Page No... 3

P15MMDN12

b. For the beam shown in Fig. Q 7(b), determine the nodal deflections, slops and the vertical deflection in the mid-point of distributed load. Use two element approximation and take E = 70 GPa, $I = 3x10^{-4}$ m⁴.

Fig. Q 7(b)

- 8 a. Write consistent mass matrix of plane truss and CST elements.
- b. A one-dimensional bar of length L, modulus of elasticity E, mass density ρ and cross sectional area A is fixed at one end and free at other end. Determine its first two natural frequencies
 16 using two elements of equal length.

UNIT - V

- 9 a. Discuss the types of boundary conditions used in heat transfer problems.
 - b. Inner surface temperature of a composite wall shown in Fig. 9(b) is maintained at 20°C. The convective heat transfer takes place at outer surface with $h = 25 \text{ W/m}^2 \text{ °C}$ and $T_{\infty} = -15^{\circ}\text{C}$. Determine temperature distribution in the wall.

10. Fig.Q10 shows a uniform aluminum fin of diameter 20 mm. The root (left end) of the fin is maintained at a temperature of $T_0=100^{\circ}$ C while convention takes place from the lateral (circular) surface and the right (flat) edge of the fin. Assuming K = 200 W/m $^{\circ}$ C, h = 1000 W/m 2 $^{\circ}$ C and $T_{\infty} = 20^{\circ}$ C, determine the temperature distribution in the fin using a two-element idealization.

Fig. Q 10

20

14

4

6