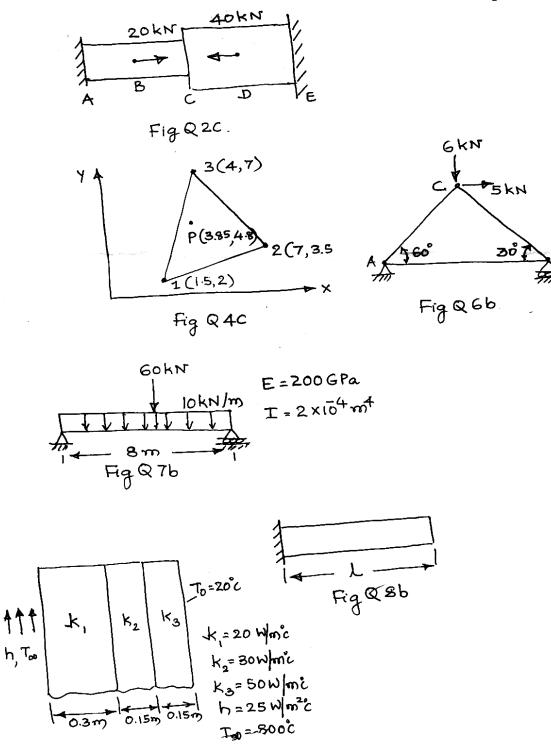
P15M	MDN12 Page No 1	
Participation of		
	P.E.S. College of Engineering, Mandya - 571 401	
(An Autonomous Institution affiliated to VTU, Belgaum)		
First Semester, M. Tech - Mechanical Engineering (MMDN) Semester End Examination; Jan/Feb 2016		
	Finite Element Method	
Time	: 3 hrs Max. Marks: 100	
<i>Note</i> : Answer FIVE full questions, selecting ONE full question from each unit .		
1 a. V	UNIT - I What are the requirements of convergence? Explain briefly.	4
b. V	With the help of Pascal tetrahedron explain briefly how geometric isotropy is achieved in	
3	3-D problems.	6
c. F	For a 3 - D elastic body derive the expression for the potential energy functional.	5
d. E	Explain briefly the principal of virtual work or deriving the element equations.	5
2 a. F	For the one dimensional quadratic bar element write the shape functions.	3
b. I	Derive the expression for element load vector for a bar element due to,	
i) Body force ii) Traction	5
i	ii) Force applied at a point and acting along the length of the bar.	
c. A	A bar of length 1000 mm is made of brass and aluminium and subjected to loads as shown in	
F	Fig. Q 2(c). AC is made of brass. Its length is 500 mm with area 1000 mm^2 and	
E	$E_b = 105$ GPa. CE is made of aluminium. Its length is 500 mm, area 2000 mm ² and	12
E	$E_a = 70$ GPa. The loads are applied at the mid points of AC and CE. Compute the stress	
d	leveloped in the two materials.	
UNIT - II		
3 a. V	With the examples briefly explain :	4
i) Plane stress ii) Plane strain problems.	
b. V	Write the shape functions for a nine noded quadrilateral element in natural coordinates.	8
c. I	Derive the Jacobian matrix for a 4 - noded quadrilateral (QUAD 4) element.	8
4 a. V	With neat sketches show the variation of shape functions for a CST element.	6
b. Т	The nodal coordinates of a CST element are in cm: 1 (2, 2), 2(4, 3) and 3(3, 6). Derive the	8
S	strain-displacement matrix.	0
c. E	Evaluate the shape functions $N_{1,} N_{2}$ and N_{3} at the interior pint P for the triangular element	6
S	hown in Fig. Q 4C.	


UNIT - III

5 a. Derive the element stiffness matrix for a triangular torus, whose vertical cross section is a plane triangle.

P15MMDN12 Page No... 2 b. Derive the expression for the : 8 i) Distributed body force ii) Surface force for an axisymmetric element. 6 a. Derive the expression for the element stiffness matrix for a plane truss element in global 6 coordinate system. b. Compute the nodal displacements and stresses in the elements of the truss structure shown in Fig. Q 6(b). Take; E = 200 GPa, Area of member AB is 20 cm² and its length is 5 m. 14 Members BC and AC have the same area and is equal to 25 cm^2 . UNIT - IV 7 a. Write the Hermite shape functions in natural coordinate system, showing their variation 6 along the length of the beam element. b. For the beam shown in Fig. Q 7b, compute the maximum deflection and slope at the support 14 points. 8 a. Evaluate the element consistent and lumped mass matrices for a 2 noded element of length *l*. 8 b. Evaluate the natural frequencies of axial vibration of the bar shown in Fig. Q 8b, considering 12 two element. UNIT - V 9 a. What are : i) Initial conditions ii) Essential conditions 3 iii) Natural conditions in a heat transfer problem. b. Derive the expression for element conduction matrix for one dimensional two noded element 8 considering conduction only using Galerkin's approach. c. A composite wall consists of three materials as shown in Fig. O 9(c). The outer temperature is $T_0 = 20^{\circ}$ C. Convection heat transfer takes place on the inner surface of the wall with 9 $t_{\infty} = 800^{\circ}$ C and $h = 25 \text{ W/m}^{2} \text{ °C}$. Determine the temperature distribution in the wall. 10. The length of a bar is 12 m and its C/s area is a circle of radius 1.5 cm. The conductivity of the bar is 300 W/m°C. The left end is maintained at 200°C and the right end is maintained at 100°C. The bar is subjected to convection. The convective heat transfer coefficient is 20

100°C. The bar is subjected to convection. The convective heat transfer coefficient is 20 2000 W/m² °C and surrounding temperature is 25°C. Determine the temperature distribution along the length of the bar taking four elements.

Contd...3

Fia Q 9C.

* * *