P15MMDN12 Page No 1		
(
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M. Tech - Mechanical Engineering (MMDN) Semester End Examination; Jan/Feb 2016 Finite Element Method		
Tim	ne: 3 hrs Max. Marks: 100	
Note	e: Answer FIVE full questions, selecting ONE full question from each unit .	
1 a.	UNIT - I What are the requirements of convergence? Explain briefly.	4
b.	With the help of Pascal tetrahedron explain briefly how geometric isotropy is achieved in	
	3-D problems.	6
c.	For a 3 - D elastic body derive the expression for the potential energy functional.	5
d.	Explain briefly the principal of virtual work or deriving the element equations.	5
2 a.	For the one dimensional quadratic bar element write the shape functions.	3
b.	Derive the expression for element load vector for a bar element due to,	
	i) Body force ii) Traction	5
	iii) Force applied at a point and acting along the length of the bar.	
c.	A bar of length 1000 mm is made of brass and aluminium and subjected to loads as shown in	
	Fig. Q 2(c). AC is made of brass. Its length is 500 mm with area 1000 mm^2 and	
	$E_b = 105$ GPa. CE is made of aluminium. Its length is 500 mm, area 2000 mm ² and	12
	$E_a = 70$ GPa. The loads are applied at the mid points of AC and CE. Compute the stress	
	developed in the two materials.	
_	UNIT - II	
3 a.	With the examples briefly explain :	4
	i) Plane stress ii) Plane strain problems.	0
b.	Write the shape functions for a nine noded quadrilateral element in natural coordinates.	8
с.	Derive the Jacobian matrix for a 4 - noded quadrilateral (QUAD 4) element.	8
4 a.	With neat sketches show the variation of shape functions for a CST element.	6
b.	The nodal coordinates of a CST element are in cm: 1 (2, 2), 2(4, 3) and 3(3, 6). Derive the strain-displacement matrix.	8
c.	Evaluate the shape functions $N_{1,} N_2$ and N_3 at the interior pint P for the triangular element shown in Fig. Q 4C.	6

UNIT - III

5 a. Derive the element stiffness matrix for a triangular torus, whose vertical cross section is a plane triangle.

Contd...2

P15MMDN12

8

6

3

8

b. Derive the expression for the :

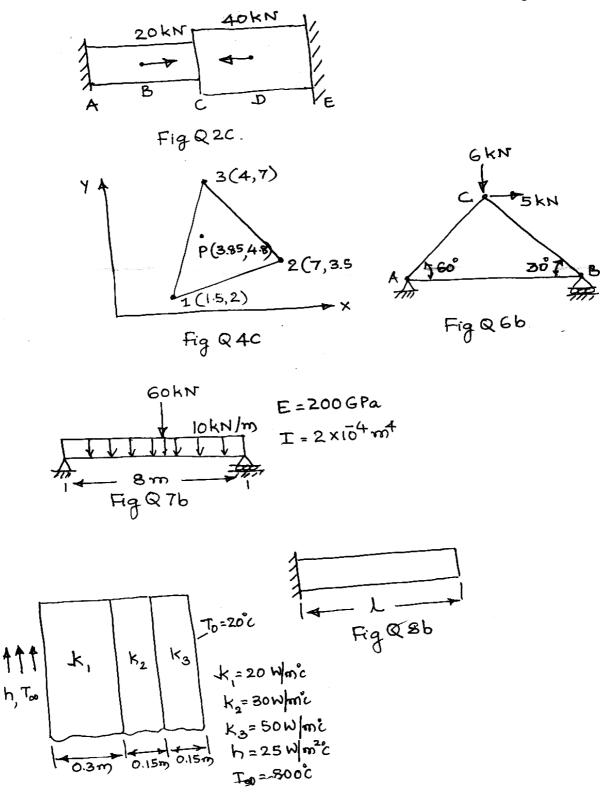
i) Distributed body force ii) Surface force for an axisymmetric element.

- 6 a. Derive the expression for the element stiffness matrix for a plane truss element in global coordinate system.
 - b. Compute the nodal displacements and stresses in the elements of the truss structure shown in Fig. Q 6(b). Take; E = 200 GPa, Area of member AB is 20 cm² and its length is 5 m. 14 Members BC and AC have the same area and is equal to 25 cm².

UNIT - IV

- 7 a. Write the Hermite shape functions in natural coordinate system, showing their variation along the length of the beam element.
 - b. For the beam shown in Fig. Q 7b, compute the maximum deflection and slope at the support points.
- 8 a. Evaluate the element consistent and lumped mass matrices for a 2 noded element of length *l*. 8
 - b. Evaluate the natural frequencies of axial vibration of the bar shown in Fig. Q 8b, considering two element.

UNIT - V


9 a. What are :

i) Initial conditions ii) Essential conditions

iii) Natural conditions in a heat transfer problem.

- b. Derive the expression for element conduction matrix for one dimensional two noded element considering conduction only using Galerkin's approach.
- c. A composite wall consists of three materials as shown in Fig. Q 9(c). The outer temperature is T₀ = 20°C. Convection heat transfer takes place on the inner surface of the wall with 9 t_∞ = 800°C and h = 25 W/m² °C. Determine the temperature distribution in the wall.
- 10. The length of a bar is 12 m and its C/s area is a circle of radius 1.5 cm. The conductivity of the bar is 300 W/m°C. The left end is maintained at 200°C and the right end is maintained at 100°C. The bar is subjected to convection. The convective heat transfer coefficient is 20 2000 W/m² °C and surrounding temperature is 25°C. Determine the temperature distribution along the length of the bar taking four elements.

Contd...3

Fia Q 9C.

* * *