P15]	MMDN12 <i>Page No 1</i>			
5				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M. Tech - Mechanical Engineering (MMDN) Make – up Examination; Feb - 2016 Finite Element Methods				
Tin	ne: 3 hrs Max. Marks: 100			
Note	e: Answer FIVE full questions, selecting ONE full question from each unit .			
	UNIT - I			
1 a.	Differentiate between the following :			
	i) Global and Local Coordinate systems	9		
	ii) Essential and Natural Boundary Conditions.			
b.	Highlight the rules to guide the placement of nodes when obtaining approximate solution to	(
	differential equation.	6		
c.	What is shape function? List the characteristics of shape functions.	5		
2 a.	Derive shape functions for quadratic bar element and plot the variation of shape functions	0		
	along the length of the element.	8		
b.	For the composite structure of axially loaded member shown in Fig. 2(b). Find unknown displacement and Reaction forces.	12		

UNIT - II

3 a. Show that shape function for Linear Quadrilateral element is given by

$$N_i = \frac{1}{4} (1 + \xi \xi_i) (1 + \eta \eta_i)$$

Where *i* = 1, 2, 3, 4.

b. For a Linear triangular element,

$$N_{1} = \frac{1}{16} (40 - 3x - 4y)$$

$$N_{2} = \frac{1}{16} (-16 + 4x)$$

$$N_{3} = \frac{1}{16} (-8 - x + 4y)$$
12

And $\mu = 0.3 \text{ E} = 2 \ 10^5 \text{ MPa}$ out $t_e = 1$. Determine the strain displacement matrix and stiffness matrix for a plane strain element.

- 4 a. Using Lagrange functions derive shape function for hexahedron (Brick) element.
 - b. Differentiate between CST and LST element.
 - c. Evaluate the Jacobian matrix at the local coordinates $\xi = \eta = 0.5$ for the linear quadrilateral element with its global coordinates at (4, 4), (7, 5), (8, 10) and (3, 8) at nodes 1, 2, 3 and 4 8 respectively.

8

4

P15MMDN12

UNIT - III

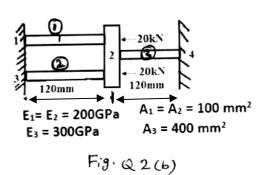
- 5 a. What is meant by axi-symetric field problem? Give example. List the required conditions for a problem assumed to be axi-symmetric and also write down the relationship between stress
 10 and strain for the axi-symmetric problem.
 - b. Derive [B] matrix for an axi-symmetric triangular element.
- 6. For the three bar truss shown in Fig. Q. 6(a) determine the nodal displacements and the – stresses in each member. Find the support reactions also. 20 Take E = 200 GPa, $A_1 = 1500 \text{ mm}^2$ and $A_2 = A_3 = 2000 \text{ mm}^2$.

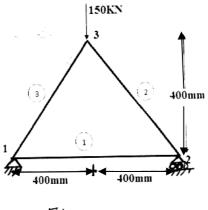
UNIT - IV

7 a.	Differentiate between Lagrange's and Hermit interpolation function.	4
b.	Find the deflection and slopes at the nodes for the aluminium beam shown in Fig. Q. 7(b).	16
8 a.	Derive the mass matrix for a 2 noded one dimensional bar element.	6
b.	For the bar shown in Fig. Q8(b) determine the first two natural frequencies.	14
	Tate E = 210 GPa, $\rho = 7860 \text{ kg/m}^3 \text{ A}_1 = \text{A}_2 = 650 \text{ mm}^2$. Use lumped mass matrix equations.	14

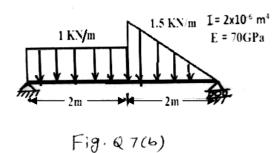
UNIT - V

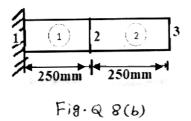
- 9 a. Consider a wall of a tank containing a hot liquid at a temperature T_o with an air stream of temperature T_{∞} passed on the outside maintaining a wall temperature of T_w at the boundary specify the governing differential equation for one dimensional heat conduction and specify the boundary conditions.
 - b. A composite slab consists of three materials with thermal conductivities of 20 W/m°C, 30 W/m°C, 50 W/m°C and thickness of 0.3 m, 0.15 m and 0.15 m respectively. The outer surface is at 20°C and the inner surface is exposed to the convective heat transfer coefficient of 25 W/m²°C and a medium at 800°C. Determine the temperature distribution within the wall.
- 10 a. Derive element conductivity matrix for a i1 neat conduction problem using Galerkin approach.
 - b. Calculate the temperature distribution in a one dimensional fin with the physical properties given in Fig. Q.10 (b). The fin is rectangular in shape and is 8 cm long, 4 cm wide and 1 cm 14 thick. Assume that convection heat loss occurs from the fin. Model the fin by four elements.

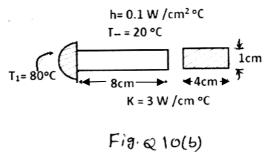

Contd.....3


10

4


16


6



* * *