
P1	5MMDN13 <i>Page No 1</i>
	U.S.N
T	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M. Tech - Mechanical Engineering (MMDN) Semester End Examination; Jan -2017 Theory of Elasticity ime: 3 hrs Max. Marks: 100
Na	ote: Answer FIVE full questions, Selecting ONE full question from each unit.
la.	UNIT - I Explain the assumptions in theory of elasticity.
	Derive Cauchy's stress formula.
	For the following Tensor determine the Resultant stress, Normal stress and Shear stress on the
2.	Octahedral plane.
	200 200 200
	$\tau_{ij} = \begin{bmatrix} 200 & 200 & 200 \\ 200 & -100 & 200 \\ 200 & 200 & -100 \end{bmatrix} MPa$
	$\begin{bmatrix} 200 & 200 & -100 \end{bmatrix}$
2 a.	The state of stress at a point is given by
	$\tau_{ij} = \begin{bmatrix} 9 & 6 & 3 \\ 6 & 5 & 2 \\ 3 & 2 & 4 \end{bmatrix} MPa$
	Obtain the magnitudes of principal stresses.
b.	The stress components at a point in a body are given by
	$\sigma_x = 3xy^2z + 2x, \sigma_y = 5xyz + 3y \sigma_z = x^2y + y^2z$
	$\tau_{xy} = 0 \qquad \tau_{yz} = \tau_{zx} = 3xy^2 z + 2xy$
	Determine whether equilibrium exists. If not determine suitable body force vector at point $(1, -1, 2)$
	UNIT - II
a.	Explain the term cubical dilation and obtain an expression for the same.
b.	Explain the significance of strain compatibility and derive 2 dimensional strain compatibility
	equations and extend it to 3D.
c.	The displacement field at a point in a body is $U = \left[\left(x^2 + 3 \right) i + 3y^2 z j + \left(x + 3z \right) k \right] \times 10^3$. Obtain
	the strain tensor at $(1, 2, 3)$
a.	The strain components at a point is a body are given by;
	$\epsilon_x = 0.01 \ \epsilon_y = -0.02 \ \epsilon_z = 0.03 \ \gamma_{xy} = 0.015 \ \gamma_{yz} = 0.02 \ \gamma_{zx} = -0.01.$ Obtain the normal, shear

and resultant strains on Octahedral plane.

P	P15MMDN13 Page No 2	
b	. Obtain 2D strain displacement relations and hence deduce 3D relation.	8
c	. Write the expressions for strain invariants.	4
	UNIT - III	
5 a	. State and prove the following :	
	(i) Principle of superposition	16
	(ii) Existence of uniquries of solution	
b	. State and explain generalized Hook's law.	4
6 a	. Explain plane stress and plane strain analysis with example.	8
b	. Derive the strain compatibility equation in terms of stresses.	8
c	. Explain the inverse method of solving elasticity problem.	4
UNIT - IV		
7 a	. Explain the term Airy's stress function. Obtain the biharmonic equation in polar form.	10
b	. Discuss the analysis of a cantilever beam subjected to an edge load using stress function and obtain stress components.	10
8 a	Prove that the warping function and satisfier Laplacion equation in tosion of prismatic bars of	

- 8 a. Prove that the warping function and satisfier Laplacion equation in tosion of prismatic bars of solid section.
 - b. A thin walled section of dimensions $2a \ x \ a \ x \ t$ is to be compared to a solid circular section of diameter 'a'. Determine the thickness t, so that the two sections have (i) Same τ_{max} (ii) Same stiffness

- 9 a. Derive the expression for the radial and tangential stresses in a thick cylinder (Lami's equations) subjected to an internal pressure P_a and external pressure P_b. The inside radius of 10 cylinder is 'a' and the external radius is 'b'.
 - b. A steel cylinder has an inside dia of 1 meter and it is subjected to an internal pressure of 8 MPa. Compute the thickness if the maximum shear stress is not to exceed 35 MPa.
- 10 a. Write the thermo elastic stress strain relations for a plane stress.
 - b. Obtain the expression for a solid circular thin disk (non-rotating) of uniform thickness subjected to a uniform temperature distribution T = T(r).

4