

U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Second Semester, M. Tech - Mechanical Engineering (MMDN) Make - up Examination; July - 2016 Advanced Theory of Vibrations

Time: 3 hrs

Max. Marks: 100

20

Page No... 1

Note: i) *Answer FIVE full questions, selecting ONE full question from each unit. ii*) *Assume suitable missing data if any.*

UNIT - I

- 1. A single degree of freedom spring-mass-damper system with $\underline{m} = 0.1 \text{ kg}$, $\underline{k} = 1000 \text{ N/m}$ and $C = 10^{N-s/m}$ is subjected to excitation force which varies as shown in Fig. Q(1). Obtain the response equation of the system by considering the first three harmonics of the forcing function.
- 2 a. One cycle of the forcing function shown in Fig. Q 2(a) is split into twelve divisions and the magnitudes of force at different instants of time are shown in Table Q 2(a). Obtain the first 10 three harmonic components of the forcing functions.
 - b. Use convolution integral to determine the response of an undamped single degree of freedom system due to triangular pulse shown in Fig. Q 2(b).

UNIT - II

3 a.	Discuss about coordinate coupling and existence of different types of coupling in a system.	6
b.	Obtain flexibility and stiffness matrix for the system shown in Fig. Q 3(b) and show that they	14
	are inverse to each other.	14
4.	For the system shown in Fig. Q (4), obtain the natural frequencies and mode shapes.	20
	UNIT - III	
5.	Obtain the response equation for the free vibration of a string with both ends fixed.	20
6.	. Find the natural frequencies and free vibration (longitudinal) solution of a bar fixed at one	
	end and free at the other.	20
	UNIT - IV	
7 a.	Derive the expression for ratio of absolute amplitudes of a single degree of freedom	10
	spring-mass-damper system subjected to base excitation.	10

- b. With necessary sketches and equation explain the working principle of an accelerometer. 10
- 8 a. With necessary sketches explain frequency measuring instruments.
- b. Sketch and explain two types of mechanical vibration exciters.

Contd...2

8

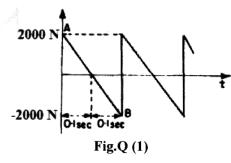
12

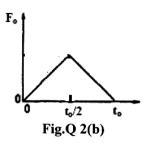
P15MMDN22

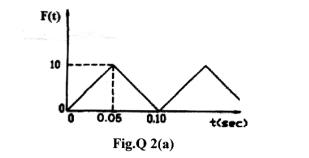
4

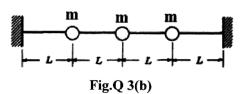
8

8

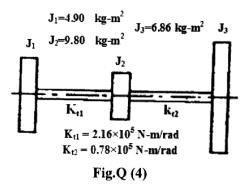

8


UNIT - V


- 9 a. Write any four differences between linear and non-linear vibrating systems.
 - b. With necessary sketches and equations discuss about two non-linear systems.
 - c. Discuss method of isoclines for constructing trajectory of a linear system.
- 10 a. Discuss about phase plane trajectories for a linear system.
 - b. A system with dry friction damping has its differential equation of motion given


by $x + \phi(x) + x = 0$, where $\phi(x) = F$ where x is positive and $\phi(x) = -F$ where x is negative. 12

Obtain trajectory of motion when the system is given an initial displacement and released.



i	F(t) _i
1	1.67
2	3.33
3	5.00
4	6.67
5	8.33
6	10.00
7	8.33
8	6.67
9	5.00
10	3.33
11	1.67
12	0.00

Table Q 2(a)

