

P15MMDN23Page No 2		
6 a.	Explain the experimental verification of Prandtl-Rouss theory.	10
b.	Describe; (i) Plastic Potential ii) Plastic work and strain hardening hypothesis.	10
UNIT - IV		
7 a.	Derive the relation $\frac{M}{I_n} = \frac{\sigma}{Y^n} = \frac{H}{R^n}$ in plastic bending for a material, following the non-linear	12
	stress Strain law.	
b.	A cantilever beam of 100 mm wide and 150 mm deep is 5 m long and is subjected to an end	
	load of 6000 N. If the stress strain curve for beam material is given by $\sigma = 7000 f^{0.25}$,	8
	determine the maximum stress induced in the beam.	
8 a.	For an elastic work hardening material, derive the expression for torque to cause,	
	(i) Incipient yielding	10
	(ii) Elasto plastic yielding	12
	(iii) Fully plastic yielding in torsion of a bar.	
b.	A solid circular shaft of radius 12 cm is subjected to transmit 600 kW at 540 rpm. The	
	maximum torque is 30 percent greater than the mean torque. If the shear stress-shear strain	
	curve for the shaft material is given by $\tau = 280\gamma^{0.25}$, determine the maximum stress induced	8
	in the shaft and the corresponding angle of twist. What would be these values if the stress-	
	strain curve is a linear one? ($G = 0.84 \times 10^5 \text{ MPa}$).	
UNIT - V		
9 a.	Explain the properties of slip lines.	8
b.	Derive continuity equations for a slip line.	12
10 a.	State and Prove Hencky's first theorem.	12
b.	Explain Numerical method to construct slip line nets.	8

* * * *