

v.s.n P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum) Second Semester, M. Tech – Mechanical Engineering (MMDN) Semester End Examination; June - 2016 Fracture Mechanics

Time: 3 hrs

Max. Marks: 100

Page No... 1

Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume suitable missing data if any. iii) Use of data hand book is permitted.

UNIT - I

1 a.	State the Griffith's Energy balance criterion. Derive an expression for the fracture strength of	f 10
	a brittle solid, containing through thickness elliptical crack.	
b.	What are ductile and brittle fractures? State their characteristics.	6
c.	Briefly explain the historical development in fracture mechanics.	4
2 a.	Define Fracture. Explain with neat sketch the modes of fracture failure.	8
b.	Explain different NDT methods used in detecting the crack.	6
c.	A flat plate with a through thickness crack is subjected to a 200 MPa tensile stress and has a	
	fracture toughness K_{IC} of $50MPa\sqrt{m}$. Determine the critical crack length assuming the	6
	material linear elastic. Also calculate the energy release rate (G _c) of the material.	0
	Assume $E = 207000 \text{ MPa}$.	

UNIT - II

3 a.	Show that stress intensity factor for mode-I (K _I) for the single edge notched tensile panel	8		
	reduces to ; $K_I = 1.12\sigma\sqrt{\pi a}$ for $a \ll w$.			
b.	Write an expression for the plastic zone size according to Irwin approach and draw the plastic	0		
	zone shapes for all the three modes of plane stress and plain strain conditions.	8		
c.	Discuss the effect of thickness on the fracture toughness.	4		
4 a.	Describe the test procedure for determining I_{IC} using three points bent specimen in the	10		
	laboratory.			
b.	Derive an expression for the relationship between 'G' and 'K _I '.	5		
c.	Explain the significance of R-Curve.	5		
UNIT - III				
5a.	Determine the energy release rate for a DCB specimen. Also obtain an expression for K _I .	8		
b.	Define J-integral. Show that the J-integral is path independent and explain the terms in	10		
		12		

J-integral expression. Mention its properties.

Contd...2

P15MMDN251 Page No 2					
6 a.	Using Paris formulation for fatigue crack growth, obtain an expression for the number of				
	cycles, required for the crank to propagate, for an initial length ' a_i ' to a final length ' a_f ' for	12			
	the case if $m = 2$.				
b.	Explain the factors influencing the fatigue crack growth.	8			
UNIT - IV					
7 a.	Explain the basic principles of crack arresting methods. With neat sketches, explain at least	10			
	three such techniques.	10			
b.	Explain the concept of leak before break criterion.	10			
8 a.	Write short notes on :				
	(i) Importance of K-R curve in fracture analysis,	10			
	(ii) Damage tolerance design.				
b.	Derive the equation for the crack-propagation speed.	10			
UNIT - V					
9 a.	Explain the factors affecting the crack propagation.	10			
b.	List the fatigue crack growth laws and explain any three laws with formulae.	10			
10 a.	Write a note on :				
	(i) Effect of overload on the fatigue crack growth,	10			
	(ii) Computational fracture mechanics.				
b.	Explain strain energy density criterion.	10			

* * * *