U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, M. Tech. - Mechanical Engineering (MMDN) Semester End Examination; Dec - 16/Jan - 2017 Tribology and Bearing Design

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

ii) Use of Design Data Hand is permitted.

UNIT - I

		UNIT - I			
1 a.	Explain the following paramet	ers of surface roughness with e	xpressions;		
	i) Average Roughness	ii) Root mean square roughne	ss	8	
	iii) Skewness	iv) Kurtosis.			
b.	. What is friction? Explain adhesion, abrasion and junction growth theory related to friction.				
2 a.	Demonstrate with diagrams the regimes of Lubrication.				
b.	. Sketch and explain the influence of temperature and pressure on viscosity.				
c.	Explain the abrasive and adhes	sive wear mechanism.		8	
		UNIT - II			
3 a.	3 a. Derive an expression for flow through parallel stationary plates.				
b.	A lightly loaded full journal be	earing has the following specifi	cations:		
	Bearing diameter = 80 mm; I	Bearing Length = 60 mm; Dian	metrical clearance = 0.12 mm;		
	Journal speed = 2400 rpm; V	viscosity of Lubricant = 4 cp; F	Radial load = 900 N	10	
	Determine:			10	
	i) Friction Force ii) Coeffic	cient of friction			
	iii) Torque iv) Power	loss.			
4 a.	a. Write brief note on pressure development mechanism in the oil film.				
b.	b. Establish 2-D Reynolds expression for the flow between two surfaces with relative velocity.				
		UNIT - III			
5.	Derive an expression for film thickness and pressure for an idealized full journal bearing.				
6 a.	. Illustrate with a graph the importance of Sommerfeld number.				
b.	A full journal bearing has follo	owing specifications:			
	Journal Diameter = 60 mm;	Bearing Length = 60 mm;	Radial clearance = 0.05 mm;		
	Speed = 2000 rpm;	Mean viscosity = 10 cp;	Eccentricity ratio = 0.8;	15	
	Location of inlet hole = 220°;	Inlet pressure = 0.3 MPa			
	Determine the location and ma	agnitude of maximum and mini	mum pressure.		

UNIT - IV

7 a.	Derive an expression for load carrying capacity of a hydrostatic circular thrust bearing.	10
b.	A hydro static step bearing for turbine rotor has the following specifications:	
	Diameter of shaft = 150 mm	
	Diameter of pocket = 100 mm	
	Vertical thrust on bearing = 70 kN	
	Shaft speed = 100 rpm	
	Viscosity of lubricant = 0.025 Pa-sec	10
	Oil film thickness = 0.125 mm	10
	Supply pressure = 5.78 MPa	
	Determine;	
	i) Rate of flow through bearing	
	ii) Power loss due to viscous friction	
	iii) Coefficient of friction.	
8 a.	State and explain the causes of elasto-hydrodynamic lubrication.	10
b.	Derive Grubin's equation for elasto-hydrodynamic lubrication.	10
	UNIT - V	
9 a.	Elaborate on the following:	
	i) Application of gas bearings	10
	ii) Advantages and disadvantages of gas bearings.	
b.	State Reynolds equation for porous bearings and explain the working of porous bearings.	10
10 a.	Sketch and explain the working of an active and passive magnetic bearing.	10
b.	State and explain the applications of Magnetic bearings.	10