P1	5MMDN332 <i>Page No 1</i>
	U.S.N
Ti	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, M. Tech Mechanical Engineering (MMDN) Semester End Examination; Dec - 2016/Jan - 2017 Theory of Plates and Shells <i>ime: 3 hrs</i> Max. Marks: 100
No	<i>ote: i)</i> Answer FIVE full questions, selecting ONE full question from each unit.
	ii) Assume missing data, if any. UNIT - I
1 a.	Derive the differential equation for cylindrical bending of plates.
b.	Obtain the governing differential equations for small deflections of laterally loaded plates.
2 a.	State the assumptions made in the analysis of thin plates with small deflection.
b.	Derive an expression for deflection in cylindrical bending of uniformly loaded rectangular
	plate with simply supported edges.
	UNIT - II
3 a.	Show that the sum of curvatures in any two mutually perpendicular directions is constant for pure bending of plates.
b.	Develop the relationship between moment and curvature in pure bending of plates.
4 a.	A rectangular sheet metal of 5 mm thickness is bent into a circular cylinder having a radius 'r'.
	Calculate the diameter of the cylinder and moment developed in the metal, if the allowable stress not to exceed 96 MPa. Given $E = 70$ GPa and $\Upsilon = 0.3$.
b.	A circular plate with clamped edge of radius 'a' carries a load of intensity 'q' uniformly distributed over the entire surface of the plate. Develop the expression for bending moments M_r and M_t .
	UNIT - III
5.	Obtain an expression for maximum deflection of simply supported rectangular plates using Levy's method.
6.	Obtain an expression for deflection of simply supported rectangular plate by using Navier's method. Find maximum deflection for uniformly distributed load P ₀ . UNIT - IV
7 a.	State the assumptions made in the analysis of thin shells. Explain briefly the classifications of shells.
b.	Distinguish between plate and shells. Mention their advantages and disadvantages.

Contd....2

Page No... 2

P15MMDN332

8. Establish the equations required for a circular cylindrical shells loaded symmetrically with respect to its axis. Then deduce it to the long cylinder submitted to the action of bending 20 moments M_0 and shearing forces Q_0 at the ends. Also find the maximum deflection.

UNIT - V

9 a.	Obtain the expression for forces $N_x, N_{\theta x}$ and N_θ for a cylindrical shell of general shape	10
	subjected to asymmetrical loading.	10
b.	Explain DKJ theory and write its eight order differential equation.	10
10.	Write short notes on the following :	
	i) Behaviour of folded plates	
	ii) Kirchhoff's shear	20
	iii) Edge beam theory-cylindrical shells	
	iv) Conical shells and long cylindrical shells.	

* * *