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Abstract: - Let 𝐺 =  (𝑉, 𝐸) be a graph, a set 𝑆 ⊆  𝑉 is called a dominating set in 𝐺 if every 

vertex in   V - S is adjacent to a vertex in S. A dominating set S is called a paired dominating 

set in 𝐺 if the induces subgraph 〈𝑆〉  contains at least one perfect matching. A paired 

dominating set which intersecting every maximum independent set in 𝐺 is called an 

independent transversal paired dominating set in G. The minimum cardinality of an 

independent transversal paired dominating set is called the independent transversal paired 

domination number of G, denoted by  𝛾itp(G). In this paper, we begin to study this 

parameter. Exact values of  γitp(G) for some families such as flower graph, prism graphs and 

product graphs are obtained. Further some bounds are estimated for γitp(G) and also we 

study the effect of the graph operation called maximum degree based vertex addition. 2010 
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INTRODUCTION 

By a graph 𝐺 =  (𝑉, 𝐸), we mean a finite, undirected graph with neither loops nor multiple 

edges. For any graph theoretic terminology, we refer to the book by Chartrand and Lesniak [2]. 

All graphs in this paper are assumed to be non- trivial. One of the fastest growing areas in graph 

theory is the study of domination and related subset problems such as independence, covering 

and matching. In fact, there are scores of graph theoretic concepts involving domination, 

covering and independence. The bibliography in domination maintained by Haynes et al. [6] 

currently has over 1200 entries; Hedetniemi and Laskar [9] edited a recent issue of Discrete 

Mathematics devoted entirely to domination, and a survey of advanced topics in domination is 

given in the book by Haynes et al. [7]. 

Nevertheless, despite the many variations possible, we can so far identify only a limited number 

of basic domination parameters; basic in the sense that they are defined for every non-trivial 

connected graph. For instance, independent domination, connected domination, total 

domination, global domination and acyclic domination are some basic domination parameters. 

In this sequence, we introduce another basic domination parameter namely independent 

transversal paired domination motivated by independent transversal domination introduced by 

Ismail Sahul Hamid [10] and initiate the study of this new domination parameter. 

Let 𝐺 be any graph with 𝑛 vertices and 𝑚 edges. The open neighbourhood of a vertex 𝑣 ∈ V(𝐺) 

is denoted and defined by N(v) = {𝑢 ∈ V∕ 𝑢𝑣 ∈ E}, the set of vertices adjacent to 𝑣. The closed 

neighbourhood is denoted and defined by 𝑁[𝑣]  = N(𝑣) ⋃ {𝑣}. For any subset S of 𝐺, the open 

and closed neighbourhoods of 𝑆 in 𝐺 is defined by N(𝑣) = ⋃ 𝑁(𝑣) 𝑣∈𝑆  and N(𝑣) = ⋃  𝑣∈𝑆 𝑁[𝑣] 

The subgraph induced by a set 𝑆 ⊆ V is denoted 〈𝑆〉. If 𝐺 is a graph, then 𝐺+ is the graph 

obtained from G by attaching a pendant edge at every vertex of 𝐺. 

A set 𝑆 ⊆ V is called a dominating set of 𝐺 if every vertex in V ∖ S is adjacent to at least one 

vertex of 𝑆 i.e., 𝑆 is a dominating set of 𝐺 if 𝑁[𝑆] = V(𝐺) and the minimum cardinality of a 

dominating set is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). A minimum 

dominating set of a graph 𝐺 is called a 𝛾-set of 𝐺. An independent dominating set of 𝐺 is a 

dominating set 𝑆 of 𝐺 such that 𝑆 is an independent set in 𝐺. The independent domination 

number i(𝐺) is the cardinality of the minimum independent dominating set. The maximum 

cardinality of an independent set is called the independence number of 𝐺 and is denoted by 

𝛽0(G). A maximum independent set is called a 𝛽0-set. 

A subset M of E is called a matching of 𝐺 if no two edges in M are incident in 𝐺. The two ends of 

an edge are said to be matched under M. If every vertex of 𝐺 is matched under M, then M is 
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called a perfect matching. M is said to be a maximum matching of 𝐺 if no subset of 𝐺 containing 

M properly is a matching of 𝐺. Clearly, every perfect matching is maximum. A dominating set S 

such that 〈𝑆〉 contains a perfect matching is called a paired dominating set. A total dominating 

set is a dominating set 𝑆 such that 〈𝑆〉 has no isolated vertices. The minimum cardinality of a 

paired (total) dominating set is called the paired (total) domination number and is denoted by 

𝛾pd(𝐺) (𝛾𝑡(𝐺)). These two parameters can respectively be seen in [3], [11] and [12].  

Definition 1.1.  A paired dominating set 𝑆 ⊆ V of a graph 𝐺 is called as an independent 

transversal paired dominating set if S intersects every maximum independent set of 𝐺. 

The minimum cardinality of an independent transversal paired dominating set of 𝐺 is called the 

independent transversal domination number of 𝐺 and is denoted by 𝛾itp(𝐺). An independent 

transversal paired dominating set S of 𝐺 with |𝑆|= 𝛾itp(𝐺) is called a 𝛾itp-set. 

Definition 1.2.[14 ]   The join of two graphs G1 and G2, denoted by G= G1 ∨ G2, is a graph with 

vertex set V(𝐺1 ) ∪ V(𝐺2 ) and edge set E(𝐺1) ∪ E(𝐺2)∪ {𝑢𝑣|𝑢 ∈ 𝑉(𝐺1 ) 𝑎𝑛𝑑 𝑣 ∈ 𝑉(𝐺2) }. 

Definition 1.3.[14]   The corona of two 𝐺1 and 𝐺2 is defined as the graph G= 𝐺1 o G2 formed by 

taking one copy of 𝐺1 and |𝑉(𝐺1)|  copies of 𝐺2, where ith vertex of 𝐺1is adjacent to every vertex 

in the ith copy of 𝐺2. 

Definition 1.4.[1]  The  Cartesian product of simple graphs 𝐺 and H is the graph  𝐺 □ H, whose  

vertex set is V(𝐺) × V(H) and whose edge set is the set of all pairs (𝑢1, 𝑣1,) (u2,v2) such that either 

u1u2 ∈ E(𝐺) and  𝑣1 = 𝑣2 and 𝑣1𝑣2 ∈ E(H) or 𝑢1 =  𝑢2 and v1v2 ∈ E(𝐺). 

Definition 1.5.[4]  A graph 𝐺 is called an (𝑛 ×  𝑚)-flower graph if it has the following set of 

vertices V(G) = {1,2,,n,n + 1,n(m - 1)} and the edge set E{ 𝐺) = {{1, 2}, {2, 3},……..,{n-1,n}, {n, 1}} ⋃ 

{{1, n + 1}, {n + 1, n + 2}, {n + 2, n + 3}, {n + 3,n + 4}, {n + m — 3,n + m — 2},{n + m— 2,2}}⋃ {{2, n 

+ m— 1},{n + m — 1,n + m},{n + m, n + m+ 1},{n + m+ 1, n + m + 2},...,{n + 2(m - 2) - 1,n + 2(m - 

2)}, {n + 2(m - 2), 3}} ⋃ …... ⋃ {{n, n + (n - 1)(m - 2) + 1}, {n + (n - l)(m- 2) + 1, n + (n - 1)(m - 2) + 

2}, {n + (n - 1)(m - 2) + 2,{ n + (n - 1)(m -2)+2,n+(n - 1)(m - 2) + 3, {n + (n - 1)(m - 2)+3}, n +( n -1) 

m -2)+4}, ,{nm - 1, nm}, {nm, 1}}. 
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                                                            Figure 1. 

In other words, a graph 𝐺 is called a (𝑛 ×  𝑚)-flower graph if it has 𝑛 vertices which form an 𝑛-

cycle and 𝑛 sets of 𝑚 −  2 vertices which form 𝑚-cycles around the 𝑛 cycle so that each 𝑚-

cycle uniquely intersects with the 𝑛-cycle on a single edge. This graph will be denoted by 𝑓𝑛×𝑚. 

It is clear that 𝑓𝑛×𝑚 has 𝑛(𝑚 −  1) vertices and 𝑛𝑚 edges. The 𝑚-cycles are called the petals 

and the 𝑛-cycle is called the center of 𝑓𝑛×𝑚. The 𝑛 vertices which form the center are all of 

degree 4 and all the other vertices have degree 2. 

Definition 1.6.[ 16 ]  The crown graph   𝑆𝑛
0  for 𝑛 ≥  3 is the graph with vertex set  

V := {u1,u2,u3,...un,v1,v2,v3,...vn} and an edge from {𝑢𝑖𝑣𝑖  : 1 ≤ i, j ≤ n ; i ≠ j}. Therefore 𝑆𝑛
0 coincides 

with the complete bipartite graph Km,n with horizontal edges removed. 

Definition 1.7.[ 16 ]  The cocktail party graph 𝐾𝑛×2, is a graph having the vertex set                 V: 

={ul,u2,u3,...un,vl,v2,v3,...,vn } and having the edge set E : = {uiuj , vivj , uivj , viuj | 1 ≤ 𝑖 < 𝑗 ≤

𝑛}.This graph is also called as complete n-partite graph. 

Definition 1.8.[ 15]  The n-Sunlet graph is a graph of order 2𝑛 obtained by attaching n pendant 

edges to a cycle with 𝑛 vertices. i.e., the graph Cn o K1 is referred as a Sunlet graph. 

As usual given a real number 𝑥, ⌈𝑥⌉ denotes the greatest integer less than 𝑥 and ⌈𝑥⌉ denotes the 

smallest integer greater than 𝑥. 

2.  Independent Transversal Paired Domination Number: 

In this section, we determine the value of independent transversal domination number for 

some standard families of graphs such as paths, cycles and wheels. Also we determine 𝛾itp(G) 

for union of connected component graphs and graphs obtained by applying graph operations 

such as join and product of graphs. 
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Observation 2.1. If 𝐺 is a complete multipartite graph having r maximum independent sets, 

then 

                             𝛾𝑖𝑡𝑝 (𝐺) ={
2,       𝑖𝑓  𝑟 = 1 ;

 2 ⌈
𝑟

2
⌉   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

Observation 2.2. For any complete graph Kn with 𝑛 even, 𝛾itp(Kn) =  𝑛. 

If 𝑛 is odd, then the complete graph Kn contains no independent transversal paired dominating 

set. In view of the above observation we restrict our self to non-complete graphs with n 

vertices whenever 𝑛 is odd at the study of independent transversal paired domination. 

So in the rest of the paper we assume that by a graph we mean a graph 𝐺 contains no isolated 

vertices and is non-complete if order of 𝐺 is odd. 

Proposition 2.3. Let 𝐺 ≅ Km,n be a complete bipartite graph.  Then 𝛾itp(𝐺) = 2. 

Proof. Let 𝐺 be a complete bipartite graph with the vertex set V(𝐺)= 

{v1,v2,…....,.vm,u1,u2,………,un}. We may assume that 𝑚 ≤ 𝑛. Then 𝐺 contains one 

or two independent set according as 𝑚 < 𝑛 or 𝑚 = 𝑛. Clearly any edge 𝑒 = (𝑢𝑖, 𝑣𝑗  ), 

for some 𝑖, 𝑗 will be an independent transversal paired dominating set of 𝐺.Hence   𝛾itp(𝐺) =2.  

Corlllary 2.4. Let 𝐺 ≅ K1,n-1 be a star with 𝑛 ≥ 2 vertices.  Then 𝛾itp(𝐺) = 2. 

Proof. Let 𝐺 be a star with 𝑛 vertices and let 𝑉(𝐺)={ u1,u2,………,un} where un is a vertex at the 

center. Then clearly 𝐺 contains a unique maximum independent set of order 𝑛 − 1 consisting of 

all the vertices of 𝐺 except 𝑢𝑛. Also, any edge in 𝐺 will is construct a minimum paired 

dominating set of 𝐺 intersecting every maximum independent set of 𝐺. Thus any paired 

dominating set of 𝐺 itself the independent transversal paired dominating of 𝐺.   

Hence 𝛾itp(𝐺) = 𝛾pd(𝐺) = 2. 

Proposition 2.5. For any bi-star B(m,n), 𝛾itp(𝐵(𝑚, 𝑛)) = 4, where 𝑚, 𝑛 ≥ 2 

Proof.  Let V(𝐵(𝑚, 𝑛)) = {v1,v2,. ..vm,ul,u2,. ..un,u,v} where u and v are the vertices at the center. 

Then B(m, n) contains a unique maximum independent set containing all the pendent vertices. 

𝑆 = {u, v} is the minimum paired dominating set of 𝐵(𝑚, 𝑛), by adding one pendent vertex from 

each the stars K1,n and  𝐾1,𝑚 we obtain an independent transversal paired dominating set and 

so 𝛾itp(𝐵(𝑚, 𝑛)) ≤  4. On the other hand, since 𝛾pd(𝐵(𝑚, 𝑛)) = 2 and 𝛾pd -set do not intersects 
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the independent set of B(m,n), it follows that 𝛾itp(𝐵(𝑚, 𝑛)) ≥ 3. Since 𝛾itp is an even integer 

always, we have 𝛾itp(𝐵(𝑚, 𝑛)) ≥ 4. Therefore 𝛾itp(𝐵(𝑚, 𝑛)) = 4. 

Proposition 2.6. Let 𝐺 be a crown graph with 2𝑛 vertices.  Then 𝛾itp(𝐺)  = 4. 

Proof. Let 𝐺 be a crown graph with the vertex set 𝑉(𝐺)={𝑣1, 𝑣2,... 𝑣𝑛,u1,u2,...,un}.Then 𝐺 

contains two maximum independent sets of size n. Clearly the set 𝑆 = { v1,v2,u1,u2} is a paired 

dominating set of 𝐺 intersecting both independent sets of 𝐺. Hence 𝛾itp ≤ 4. 

Also the minimum parird domination number for crown graph is 4 and 𝑆 itself is minimum 

paired dominating set of 𝐺.  Hence 𝛾itp = 4 and 𝑆 is the minimum independent transversal 

paired dominating set of 𝐺. 

Theorem 2.7.  For any path 𝑃𝑛 of order 𝑛, we have 

     𝛾𝑖𝑡𝑝(𝑃𝑛) = {
4 ,   𝑖𝑓  𝑛 = 4;

2 ⌈
𝑛

4
⌉  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof. If  𝑛 = 4, the obviously 𝛾𝑖𝑡𝑝(𝑃4) = 4. So let 𝑛 ≠  4.  For any path 𝑃𝑛 with the vertices 

{𝑣1, 𝑣2, … , 𝑣𝑛} any maximum independent set of 𝑃𝑛 must be contains either 𝑣1 or 𝑣2 , we have 

two cases 

Case 1: the maximum independent set contains 𝑣1 so any minimum paired dominating set 𝑆 in 

Pn either contains 𝑣1, 𝑣2 and it will intersect the maximum independent set in 𝑣1or  𝑣2, 𝑣3 and it 

will intersect the maximum independent set in 𝑣3. Therefore any minimum paired dominating 

set in in 𝑃𝑛will intersect every maximum independent set in 𝑃𝑛. Hence, 𝛾itp(𝑃𝑛) = 𝛾pd(𝑃𝑛) = 2⌈
𝑛

4
⌉. 

Case 2: the maximum independent set contains 𝑣2 in the same way as in case 1. It is easy to see 

that 𝛾itp(𝑃𝑛) = 𝛾pd(𝑃𝑛) = 2⌈
𝑛

4
⌉. 

Theorem 2.8. For any cycle 𝐶𝑛 with 𝑛 ≥  4, we have 

   𝛾𝑖𝑡𝑝(𝐶𝑛) = {
2 ,   𝑖𝑓  𝑛 = 4;

2 ⌈
𝑛

4
⌉  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof: Let V(Cn)={v1,v2,………,vn}.Clearly we have 𝛾itp(𝐶4) = 2.Assume 𝑛 ≠ 4. 

Then Cn contains two maximum independent sets and we note that every paired 

dominating set in Cn intersects the 𝛽0-sets of Cn. Hence any paired dominating set in 
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Cn will be an independent transversal paired dominating set of Cn. Thus 𝛾itp-set of 

Cn will be same as 𝛾pd -set and so 𝛾itp(Cn) = 𝛾pd(Cn) = 2⌈
𝑛

4
⌉. 

Theorem 2.9. For any wheel graph  𝑊𝑛 on 𝑛 ≥ 5 vertices,  

  𝛾𝑖𝑡𝑝(𝑊𝑛) = {
2 ,   𝑖𝑓  𝑛 = 5  ;

  4       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

Proof : Let V = {v1,v2,......,𝑣𝑛−1,vn} be the vertex set of Wn and let 𝑣𝑛 be the vertex at the center.  

Case1: If n = 5, then S = {𝑣1,𝑣2} is a paired dominating set of W5 and as we saw in cycle we note 

that any independent set in W5 must be contains one of 𝑣1or 𝑣2. Therefore, S = {𝑣1,𝑣2}  is an 

independent transversal paired dominating set of Wn. Hence 𝛾itp(W5) ≤ 2. Thus, 𝛾itp(W5) = 2.  

Case2: If 𝑛 ≥ 6, it is easy to observe that any maximum independent set in Wn contains either 

𝑣1 or 𝑣2.Thus the set D={𝑣1,𝑣2} intersects every 𝛽0-set of Wn. Adding the vertex 𝑣𝑛 and a vertex 

vj, with j ∉ {1, 2} to the set D, the resulting set will be an independent transversal paired 

dominating set of Wn and so 𝛾itp(Wn) ≤ 4. Since Wn contains two disjoint 𝛽0-sets, and 

γitp(Wn) cannot be 2, because any minimum independent transversal paired dominating set of 

𝑊𝑛 must contains the center and one vertex from each maximum independent set,  it follows 

that 𝛾itp(Wn) ≥ 3. But 𝛾itp is an even integer always. Hence 𝛾itp(Wn)  =  4. 

Lemma 2.10. Let 𝐺 ≅ 𝑓𝑛×𝑚 be flower graph with 𝑛 vertices.  Then 

  𝛽0(𝐺) = {

𝑛(𝑚−1)

2
− 1 ,   𝑖𝑓  𝑛  𝑜𝑑𝑑 𝑎𝑛𝑑  𝑚 𝑒𝑣𝑒𝑛  ;

  
𝑛(𝑚−1)

2
                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof:  Let 𝐺 be a flower graph with 𝑛(𝑚 −  1) vertices. It is easy to note that degree of every 

vertex in 𝐺 is an even integer. The maximum independent set of 𝐺 is obtained by selecting 

alternative vertices of 𝐺. we have two cases: 

Case 1:  If 𝑛 is odd and 𝑚 is an even integer, then the order of 𝐺 will be an odd integer and the 

set  𝑆 ={ v1,v3,...... , 𝑣𝑛(𝑚−1)−3 }will be the maximum independent set in 𝐺.  

Therefore,  𝛽0(𝐺) = 
𝑛(𝑚−1)

2
  − 1.  

Case 2:  If  𝑛, 𝑚  not as in case 1, the order of 𝐺 will be an even integer. Further the set 𝑆′= 

{v2,v4,...𝑣𝑛(𝑚−1)}will be the maximum independent set in 𝐺. Therefore, we have 𝛽0(𝐺) = 
𝑛(𝑚−1)

2
. 
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Theorem 2.11.  Let 𝐺 ≅ 𝑓𝑛×𝑚  be flower graph 𝑛 vertices.  Then 𝛾𝑖𝑡𝑝(𝐺) =
𝑛(𝑚−1)

2
. 

Proof: Let 𝐺 be a flower graph with 𝑛(𝑚 −  1) vertices.  Then 𝐺 contains two maximum 

independent sets and every paired dominating set of 𝐺 intersects both the sets. Hence the 

minimum independent transversal paired dominating set of 𝐺 is same as the minimum paired 

dominating set of 𝐺. If 𝑛 is odd and 𝑚 is an even integer, then S = {v1,v2,v5,v6,.. …., 𝑣𝑛(𝑚−1)−3, 

𝑣𝑛(𝑚−1)−2, 𝑣𝑛(𝑚−1)−1, 𝑣𝑛(𝑚−1) } will be the minimum paired dominating set of 𝐺. Further each 

edge in 〈𝑆〉 as one of its end vertex from the maximum independent set of 𝐺 and in this case 𝑆 

contains 
𝛽0+1

2
 vertices from the maximum independent set of 𝐺. Hence 𝛾𝑖𝑡𝑝(𝐺) = 𝛽0 + 1. i.e., by 

using Lemma 2.9, 𝛾𝑖𝑡𝑝(𝐺)= 
 𝑛(𝑚−1)

2
. For other values of 𝑛, 𝑚 the set S = 

{𝑣1,𝑣2, 𝑣5,𝑣6 … …,𝑣𝑛(𝑚−1)−3, 𝑣𝑛(𝑚−1)−2 } will be the minimum paired dominating set of 𝐺. Since 

each edge in 〈𝑆〉 contains an end vertex from 𝛽0-set of 𝐺 and contains exactly 
𝛽0

2
 vertices. Since 

edges in 〈𝑆〉 are non-adjacent, 𝛾𝑖𝑡𝑝 will be twice the number of edges. But each edge in 

〈𝑆〉 corresponds to a vertex in 𝛽0-set and totally there are 
𝛽0

2
 such vertices.    

Hence 𝛾itp(𝐺) = 𝛽0.   i.e., by using the above Lemma 2.9,   𝛾𝑖𝑡𝑝(𝐺) = 
𝑛(𝑚−1)

2
. 

Theorem 2.12. If 𝐺 is a union of m connected components 𝐺l, 𝐺2,….., 𝐺m, then 𝛾𝑖𝑡𝑝(𝐺) =

𝑚𝑖𝑛1≤𝑖≤𝑟  𝛾𝑖𝑡𝑝(𝐺𝑖) + ∑ 𝛾𝑝𝑑(𝐺𝑗 )
𝑟
𝑗=1,𝑗≠𝑖 . 

Proof.  We first assume that 𝛾𝑖𝑡𝑝(𝐺1) + ∑ 𝛾𝑝𝑑(𝐺𝑗) =𝑚
𝑗=2 𝑚𝑖𝑛1≤𝑖≤𝑚{𝛾𝑖𝑡𝑝(𝐺) + ∑ 𝛾𝑝𝑑(𝐺𝑗)} .𝑚

𝑗=1,𝑗≠𝑖  

Let 𝑆 be a 𝛾𝑖𝑡𝑝-set of 𝐺1 and let 𝑆𝑗 be a 𝛾pd-set of 𝐺𝑗, for all 𝑗 ≥ 2. 

Then 𝑆 ⋃ (⋃ 𝑆𝑗)𝑚
 𝑗=2  is an independent transversal paired dominating set of G and 

hence   𝛾𝑖𝑡𝑝(𝐺) ≤ 𝛾𝑖𝑡𝑝(𝐺1) + ∑ 𝛾𝑝𝑑(𝐺𝑗) = 𝑚𝑖𝑛1≤𝑖≤𝑚{𝛾𝑖𝑡𝑝(𝐺𝑖) + ∑ 𝛾𝑝𝑑(𝐺𝑗)}𝑚
𝑗=1,𝑗≠𝑖

𝑚
𝑗=2𝑗 . 

Conversely, let 𝑆' be any independent transversal paired dominating set of 𝐺. Then S' must 

intersect the vertex set V(𝐺𝑗) of each component 𝐺𝑗 of G and 𝑆′ ∩ 𝑉(𝐺𝑗) is a paired dominating 

set of 𝐺𝑗 for all 𝑗 ≥  1. Further, for at least one 𝑗, the set 𝑆′ ∩ 𝑉(𝐺𝑗) must be an independent 

transversal paired dominating set of 𝐺𝑗, for otherwise each component 𝐺𝑗will have a maximum 

independent set not intersecting the set 𝑆′ ∩ 𝑉(𝐺𝑗) and so the union of these maximum 

independent sets from a maximum independent set of 𝐺 not intersecting S'. 

Hence |𝑆′| ≥ 𝑚𝑖𝑛1≤𝑖≤𝑚 {𝛾𝑖𝑡𝑝(𝐺𝑗) + ∑ 𝛾𝑝𝑑(𝐺𝑗)}𝑚
𝑗=1,𝑗≠𝑖 .  

Theorem 2.13. Let 𝐺 be any cycle 𝐶𝑛on  𝑛 vertices. Then 𝛾𝑖𝑡𝑝(𝐶𝑛 o Pk) =2⌊
𝑛

2
⌋  + 2,where  𝑘 ≥ 3. 
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Proof: Consider the graph 𝐶𝑛 o 𝑃𝑘  . By the definition of the corona of graphs, Let 𝑆𝑖 be the 

maximum independent set of the path 𝑃𝑘 joined to the vertex 𝑣𝑖  of 𝐶𝑛. Then 𝑆 = ⋃ 𝑆𝑖
n
i=1 , 

consisting of 𝑛 copies of 𝑆𝑖 is a maximum independent set of 𝐺 o 𝑃𝑘 and |𝑆|= 𝑛β0(𝑃𝑘),  where 

𝑛 is the number of vertices in 𝐶𝑛. let 𝑀 be the maximum matching in 𝐶𝑛 , we have two cases: 

Case 1:  If 𝑛 is odd, there is a vertex 𝑣 of 𝐶𝑛 which is not matched under 𝑀. Choosing an edge 𝑒 

from the path 𝑃𝑘 joined to the vertex 𝑣, we obtain the set 𝑆′ = 𝑀 U {𝑒} which is a paired 

dominating set of 𝐶𝑛 o 𝑃𝑘, intersecting the β0 - set of 𝐶𝑛 o 𝑃𝑘. In fact 𝑆′ is the minimum 

independent paired dominating set of 𝐶𝑛 o 𝑃𝑘, since 𝑀 is the minimum set in 𝑉(𝐶𝑛) covering all 

the vertices of 𝐶𝑛 o 𝑃𝑘 except the path 𝑃𝑘 joined to the vertex 𝑣. Therefore,   γitp(𝐶𝑛 o 𝑃𝑘) =|𝑆| 

= 2𝑚 +  2, where 𝑚 = |𝑀|, matching number of 𝐺. Hence 𝛾𝑖𝑡𝑝(𝐶𝑛 o 𝑃𝑘) = 2⌊
𝑛

2
⌋  +  2. 

Case 2:  If 𝑛 is even, then the maximum matching of 𝐺 itself is the minimum paired dominating 

set of 𝐶𝑛 𝑜 𝑃𝑘 intersects no independent set of 𝐶𝑛 o 𝑃𝑘.  because  𝑘 ≥ 3. Hence choosing an 

edge e from the path 𝑃𝑘  attached to any vertex of 𝐺, the set 𝑆′=𝑀 U {𝑒} is a 𝛾𝑖𝑡𝑝-set of 𝐶𝑛 o Pk 

and so   𝛾𝑖𝑡𝑝(𝐶𝑛 o Pk) = 2⌊
𝑛

2
⌋  +  2. 

Theorem 2.14. Let 𝐺 be any connected graph with 𝑛 vertices. Then 𝛾𝑖𝑡𝑝(G o 𝐾𝑘) = 2(𝑚 +  1) 

where m is a matching number of 𝐺. 

Proof: Consider the graph 𝐺 o 𝐾𝑘. We have two possible cases here. The case 𝑛 

odd is similar to the proof of Theorem [2.12]. If 𝑛 even then choose the maximum matching 

𝑀 of 𝐺. Delete an edge 𝑒 = 𝑢𝑣, where 𝑒 𝜖 𝑀 and add the edges say 𝑒1 and 

𝑒2 joining the vertices 𝑢 and 𝑣 of 𝐺 respectively to 𝐾𝑘. Then S = M ∖ {e} ⋃ {𝑒1,𝑒2} is 

clearly the minimum independent transversal paired dominating set of 𝐺 o 𝐾𝑘.  

Hence  𝛾𝑖𝑡𝑝(𝐺 o 𝐾𝑘) = 2(𝑚 +  1). 

Theorem 2.15. Let 𝐺1  and  𝐺2   be any two graphs. If 𝛽0(𝐺𝑖) ≥𝛽0(𝐺𝑗),   i, j = 1,2 .  Then 

                       𝛾𝑖𝑡𝑝(𝐺1 ∨  𝐺2) =  𝛾𝑖𝑡𝑝(𝐺𝑖). 

Proof. Let 𝐺1  and 𝐺2  be any two graphs such that 𝛽0(𝐺1) ≥ 𝛽0(𝐺2). Since all the vertices of 𝐺1 

and 𝐺2 are adjacent to each other, each vertex in 𝐺1 dominates 𝐺2. Clearly the independent 

sets of 𝐺1 ∨ 𝐺2 are the independent sets of 𝐺1 and 𝐺2. Since 𝛽0(𝐺1) ≥ 𝛽0(𝐺2), the maximum 

independent set of 𝐺1 ∨ 𝐺2 is the maximum independent set of 𝐺1. Let S be a 𝛾𝑖𝑡𝑝-set of 𝐺1    

then clearly S also the 𝛾𝑖𝑡𝑝-set of 𝐺1 ∨  𝐺2. Hence, 𝛾𝑖𝑡𝑝(𝐺1 ∨  𝐺2) =  𝛾𝑖𝑡𝑝(𝐺𝑖). 



Research Article          CODEN: IJPAKY             Impact Factor: 4.226          ISSN: 2319-507X                                                                                                     
K. B. Murthy, IJPRET, 2015; Volume 4 (5): 13-27                                                               IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

22 

The grid graph is the graph Cartesian product Pn □ Pm where Pn is the path graph with n vertices. 

For 𝑚 =  2, the graph Pn □ Pm is called the Ladder graph having 2n vertices and 3n - 2 edges. 

Theorem 2.16. Let Pn be a path with n vertices.  Then  𝛾𝑖𝑡𝑝(𝑃𝑛□ 𝑃2) = 2 ⌈
𝑛

3
⌉. 

Proof. Let 𝑉(𝑃𝑛□ 𝑃2)={ 𝑣1, 𝑣2, 𝑣3, … … … . , 𝑣𝑛, 𝑢1,u2,u3,.............,un}.Then the product 

graph Pn×P2 contains two maximum independent sets of size 𝑛.Any edge 

taken between two paths has one of its end vertex from the 𝛽0-set. The set 

S={v2,u2,v5,u5,......,v3k+2,u3k+2} where 𝑘 = ⌊
𝑛−1

3
⌋ is clearly the minimum paired 

dominating set of Pn × P2  and 𝑆 intersecting any maximum independent set of Pn □ P2. 

Therefore, the set 𝑆 is a minimum independent transversal paired dominating set of Pn □ P2 .  

To get the size of the set 𝑆, we have 𝑆 = {𝑣𝑖 , 𝑢𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 3𝑘 + 2 𝑎𝑛𝑑 𝑘 = 0,1, … , ⌊
𝑛−1

3
⌋}. 

Therefore |𝑆|=⌊
𝑛−1

3
⌋ + 1. Hence  𝛾𝑖𝑡𝑝(𝑃𝑛□ 𝑃2) = 2 ⌊

𝑛−1

3
⌋ + 2.  

Theorem 2.17. Let 𝐶𝑛be a Cycle with 𝑛 vertices.  Then 𝛾𝑖𝑡𝑝(𝐶𝑛□ 𝑃2) = 2 ⌊
𝑛−1

3
⌋ + 2. 

Proof. Let 𝑉(𝐶𝑛□𝑃2)={v1,v2,v3,…….,vn,𝑢1,u2,u3,.........,un}. Then the product 

graph Cn □ P2 contains two maximum independent sets of cardinality 2𝛽0(Cn).  

The set S={vl,ul,v4,u4,...,v3k+1,u3k+1} where 𝑘 = ⌊
𝑛−1

3
⌋ is clearly a minimum paired dominating set 

of    Cn × P2 intersecting any maximum independent set of Cn □ P2. Therefore, the set 𝑆 itself is a 

minimum independent transversal paired dominating set of Cn □ P2.  To get the size of  𝑆 it is 

easy to see that 𝑆 𝑐𝑎𝑛 be written as 𝑆 = {𝑣𝑖 , 𝑢𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 3𝑘 + 1 𝑎𝑛𝑑 𝑘 = 0,1, … , ⌊
𝑛−1

3
⌋}.  

That means 𝑆 Contains ⌊
𝑛−1

3
⌋ + 1 vertex. Hence 𝛾𝑖𝑡𝑝(𝐶𝑛□ 𝑃2) = 2 ⌊

𝑛−1

3
⌋ + 2. 

I. 3. Some Bounds for 𝜸𝒊𝒕𝒑(𝑮): 

We first recall following theorems required for our study: 

Theorem 3.1. [11] Let 𝐺 be a connected graph with 𝑛 vertices. Then 2 < 𝛾𝑝𝑑(𝐺) ≤ 𝑛 and this 

bounds are sharp. 

Let Φ be the collection of graphs 𝐶3, 𝐶5 and the subdivided star 𝑆(K1,n). Then we have the 

following theorem. 
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Theorem 3.2. [11] Let 𝐺 be a connected graph with 𝑛 ≥  3 vertices. Then 𝛾𝑝𝑑(𝐺) ≤ 𝑛 − 1. 

Equality holds if and only if  𝐺 ∈ Φ. 

Theorem 3.3. [8] Let 𝐺 be a connected graph with 𝑛 vertices.  Then 
𝑛

∆(𝐺)
≤ 𝛾𝑖𝑡𝑝(𝐺) 

We have one of the important remarks here: 

Remark 1. Let 𝑆 be the minimum independent transversal paired dominating set of 𝐺. Then 〈𝑆〉 

only edges in 𝐺, it contains no isolated vertices. Hence 𝑆 is a total dominating set of 𝐺.  Thus for 

any graph 𝐺, we have 𝛾𝑡(𝐺) ≤ 𝛾𝑖𝑡𝑝(𝐺). 

Theorem 3.4. Let 𝐺 be a connected graph with 𝑛 vertices. Then 𝛾𝑡(𝐺) ≤ 𝛾𝑝𝑑(𝐺) ≤ 𝛾𝑖𝑡𝑝(𝐺) ≤ 𝑛.  

Proof: Since every independent transversal paired dominating set of G is a paired dominating 

set of 𝐺, we have the second inequality. Further every paired dominating set of 𝐺 is a total 

dominating set of 𝐺 so we get 𝛾𝑡(𝐺) ≤ 𝛾𝑝𝑑(𝐺). 

Theorem 3.5. Let 𝐺 be a connected non-complete graph with 𝑛 ≥ 5 vertices.   

Then  2 ≤ 𝛾(𝐺) ≤ 𝛾𝑖𝑡𝑝(𝐺) ≤ 𝑛 − 1. 

Proof. Let V(𝐺) = {v1,v2, ……, vn}. The case 𝑛 odd is trivial. Assume 𝑛 is even. Since 𝐺 is non-

complete, β0(𝐺) ≥ 2. Let 𝑆 be a 𝛾𝑝𝑑-set of 𝐺. Then |𝑆| ≤ 𝑛 − 1  as the graph 𝐺 is connected. 

Further the 𝛾𝑝𝑑-set S intersects the β0-set of 𝐺, for otherwise it will be a contradiction to the 

order of 𝐺. From which it follows that 𝑆 itself the minimum independent transversal paired 

dominating set of 𝐺 and 𝛾𝑖𝑡𝑝(𝐺) = |𝑆| ≤ 𝑛 − 1.        

Let ℱ be the collection of complete graphs of even order, any graph of order 4 and 𝑚𝐾2 where 

𝑛 =  2𝑚, an even integer. 

Theorem 3.6. Let 𝐺 be any connected graph with at least 2 vertices. Then 2 ≤ 𝛾𝑖𝑡𝑝(𝐺) ≤

𝑛 𝑎𝑛𝑑 𝛾𝑖𝑡𝑝(𝐺) = 𝑛 if and only if  𝐺 ∈ ℱ. 

Proof. Let 𝐺 be any connected graph, since V(𝐺) itself the maximum independent 

transversal paired dominating set of 𝐺 and 2 ≤ 𝛾𝑝𝑑(𝐺) always, we get 2 ≤  𝛾𝑖𝑡𝑝(𝐺) ≤ 𝑛. 

Suppose 𝛾𝑖𝑡𝑝 = 𝑛. Then if 𝛽0 = 1 then 𝐺 ≅ K2k. Suppose 𝛽0 ≥ 2. On contrary 

assume 𝐺 ∉ ℱ. Then clearly the order of 𝐺 must be at least 5. Now if 𝐺 connected, by Theorem 

3.5, 𝛾𝑖𝑡𝑝(𝐺) ≤ 𝑛 − 1, a contradiction. Hence if 𝐺 connected then order of 

𝐺 is at most 4. Clearly it is easy to check that the order of 𝐺 cannot be less than 4. Hence order 
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of 𝐺 must be 4. If 𝐺 cyclic then we have 𝛾𝑖𝑡𝑝(𝐺) = 2, which is not possible. Hence 𝐺 is acyclic.  

Further 𝐺 cannot be a star. Thus 𝐺 must be a path on 4 vertices, i.e., 𝐺 ≅ 𝑃4. If 𝐺 disconnected, 

we let 𝐺1, 𝐺2,..... 𝐺m be the connected components of 𝐺. 

 Since 𝐺 contains no isolated vertices we must have 𝑚 ≤
𝑛

2
  and clearly each 

component has order at least 2. By our assumption V(𝐺) is the minimum independent 

transversal paired dominating set of 𝐺. Suppose if 𝑚 <
𝑛

2
 then there must be at least one 

connected component 𝐺k of 𝐺 with |𝑉(𝐺𝑘)| ≥3. Hence by Theorem 3.5 there is a 

vertex 𝑣 ∈ V(Gk) such that V(𝐺k) ∖ {v} is a 𝛾𝑖𝑡𝑝-set of 𝐺k. Therefore we should have 𝛾𝑖𝑡𝑝 ≤ 𝑛 − 1, 

contradicting our assumption. Thus each component of 𝐺 is of order 2 

and there are exactly  
𝑛

2
 components. i.e., 𝐺 ≅ 𝑚𝐾2  where 𝑛 = 2𝑚.  

Theorem 3.7. For any graph 𝐺, we have 𝛾𝑝𝑑(𝐺)≤ 𝛾𝑖𝑡𝑝(𝐺) ≤ 𝛾𝑝𝑑(𝐺) + 𝛿(𝐺). 

Proof. First inequality is trivial. Now, suppose 𝑣 is any vertex of 𝐺 of degree 𝛿(𝐺) 

and S be the minimum paired dominating set of 𝐺 Then every maximum independent 

set of 𝐺 contains a vertex of 𝑁[𝑣] so that S  ∪  𝑁[𝑢] is an independent transversal paired 

dominating set of 𝐺. Further, since S intersects 𝑁[𝑢], it follows that |𝑆 U 𝑁[𝑢]| ≤ 𝛾𝑖𝑡𝑝(𝐺) +

𝛿(𝐺)  and hence the second inequality follows.  

Remark 2. For any graph 𝐺 ∈ ℱ we have  𝛾𝑖𝑡𝑝(𝐺) =  𝑛. In particular if 𝐺 ≅ Kn then- 𝛾𝑖𝑡𝑝(𝐾𝑛) = 𝑛 

but 𝛽0(𝐾𝑛) = 1. But for the star 𝐾1,𝑛−1with 𝑛 ≥ 3, we have  𝛾𝑖𝑡𝑝(𝐾1,𝑛−1) = 2 and 𝛽0(𝐾1,𝑛−1) = 𝑛. 

For the flower graph 𝑓𝑚×𝑛, if 𝑛 odd and 𝑚 even, then  𝛾𝑖𝑡𝑝( 𝑓𝑚×𝑛) = 𝛽0 + 1and for 

otherwise 𝛾𝑖𝑡𝑝( 𝑓𝑚×𝑛) = 𝛽0. Hence for any graph 𝐺, there is no relation between its 

independent transversal paired domination number and the independence number. 

II. 4. Maximum degree based vertex addition: 

Let 𝐺 be any graph. Given any graph theoretic parameter of 𝐺, the effect of removal of a vertex 

and an edge on the parameter is of practical importance.  As far as our parameter  𝛾𝑖𝑡𝑝 is 

concerned, the above mentioned operations may increase, decrease the value of  𝛾𝑖𝑡𝑝 or it may 

remain unchanged.  Suppose if we consider the operation vertex removal we have the following 

example: 

For the star 𝐾1,𝑛−1(𝑛 ≥ 4), we have  𝛾𝑖𝑡𝑝𝐾1,𝑛−1) = 2, but  𝛾𝑖𝑡𝑝(𝐾1,𝑛−1 − u) = 2 where 𝑢 is any 

vertex of the star of degree one. Also 𝛾𝑖𝑡𝑝(W7) =3, whereas  𝛾𝑖𝑡𝑝(W7 - v) = 2, where 𝑣 is the 

center vertex of the wheel. Here we consider one more type of operation on 𝐺 as follows. 
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Given any two non-adjacent vertices 𝑢 and 𝑣 of 𝐺, Insert a new vertex w between u and v and 

the edges uw and vw, if 𝑑𝑒𝑔𝑢 +  𝑑𝑒𝑔𝑣 ≤ ∆(𝐺),where ∆( 𝐺) denotes the maximum of the 

degree of 𝐺 and it will be fixed throughout the operation. We denote the graph obtained from 

𝐺 by applying the above operation by 𝐺*. Clearly this operation may alter the value of  𝛾𝑖𝑡𝑝(𝐺) 

or may leave it unchanged. It is easy to observe that by the definition of the operation, V(𝐺) ≤ 

V(𝐺*) and E(𝐺) ≤ E(𝐺*), equality holds if and only if G contains no non-adjacent vertices.  

We have the following easy observations: 

Observation 4.1. 𝐺 = 𝐺* if and only if 𝐺 is a complete graph. 

Observation 4.2. Let 𝐺 be any graph with 𝑛 vertices. Then 𝐺 is always a subgraph of 𝐺*. 

Observation 4.3. Let 𝐺 be any graph with 𝑛 vertices. Then Δ(𝐺) = Δ(𝐺*) and δ(𝐺) ≤ δ(𝐺*). 

Figure 2 below shows the maximum degree-vertex addition of the star K1,4. Since ∆(K1,4 ) = 4, we 

add vertices 𝑢𝑖between two successive pairs of pendent vertices of K1,4. Note that the line 

joining 𝑢1 and 𝑢3 is not incident with 𝑣5 and similar holds for the line joining the vertices  𝑢2 

and 𝑢4. 

 

Consider the following example: 

Example 4.1. Suppose 𝐺 ≅ Pn with 𝑛 ≠ 4k (k ≥ 2).Then 𝐺* ≅ 𝐶𝑛+1. Since 𝛾𝑖𝑡𝑝(𝑃𝑛) = 𝛾𝑖𝑡𝑝(𝐶𝑛), 

we get 𝛾𝑖𝑡𝑝(𝐺) = 𝛾𝑖𝑡𝑝(𝐺*). 

Example 4.2. Suppose 𝐺 ≅ Kn-1 with 𝑛 ≠ 3. Then 𝐺* is obtained by inserting the vertex between 

adjacent pendent edges and joining them by edges, the graph is as shown in figure 2. We have 

𝛾𝑖𝑡𝑝(𝐾1,𝑛−1) = 2. We now determine 𝛾𝑖𝑡𝑝(𝐾1,𝑛−1
∗ ). Since we are adding exactly 𝑛 − 1 vertices to 

𝑉(𝐾1,𝑛−1) to obtain 𝐾1,𝑛−1
∗ , we have 𝑉(𝐾1,𝑛−1

∗ ) = 2(𝑛 − 1). Further 𝐾1,𝑛−1
∗  contains unique 

maximum independent set consisting of 𝑛 − 1 vertices added and the vertex at the center. Thus 
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𝛽0(𝐾1,𝑛−1
∗ ) = 𝑛. The 𝛾𝑖𝑡𝑝 𝑠𝑒𝑡 of 𝐾1,𝑛−1 covers all the vertices except the 𝑛 − 3 vertices added. 

Hence we must select at least one edge from edges added to obtain the 𝛾𝑖𝑡𝑝 − 𝑠𝑒𝑡 of 𝐾1,𝑛−1
∗ . 

Hence 𝛾𝑖𝑡𝑝(𝐾1,𝑛−1)< 𝛾𝑖𝑡𝑝(𝐾1,𝑛−1
∗ ). 

From the above example [5.2], it is proved that the operation above may increase the value of 

𝛾𝑖𝑡𝑝 or remain unchanged. But clearly the operation never decreases the value of 𝛾𝑖𝑡𝑝. 

Therefore, it is possible to partition the class 𝒢 of all graphs into two sets 𝒢0 and 𝒢+, where 

𝒢0 = {𝐺 𝜖 𝒢 𝛾𝑖𝑡𝑝(𝐺)⁄ = 𝛾𝑖𝑡𝑝(𝐺∗)}, 

                                                                𝒢+ = {𝐺 𝜖 𝒢 𝛾𝑖𝑡𝑝(𝐺)⁄ > 𝛾𝑖𝑡𝑝(𝐺∗)}. 

Also, from the examples it is evident that the sets 𝒢0 and 𝒢+ are non-empty and the complete 

graph Kn belongs to none of them. Similarly, one can partition class of graphs into the sets 𝒜′, 

𝒜 + and 𝒜− with respect to the operation called edge lifting introduced by T. W. Haynes et 

al[13]. Now, we can start investigating the properties of these sets. 

Partitioning the vertex set V(𝐺) of a graph 𝐺 into subsets of V(𝐺) having certain property is also 

one of the direction for the research in graph theory.  

For instance, one such partition is domatic partition which is a partition of V(𝐺) into dominating 

sets. Analogously, we can demand each subset in the partition of V(𝐺) to have the property 

being independent transversal paired domination instead of domination alone or any other 

type of domination and call this partition an independent transversal paired domatic partition. 

Further, since the maximum matching of 𝐺 is always an independent transversal paired 

dominating set of 𝐺, such partition exists for all graphs except for the complete graphs of odd 

order so that asking the maximum order of such partition is reasonable; let us call this 

maximum order as the independent transversal paired domatic number and denote it by 

ditp(𝐺). Now, begin investigating the parameter ditp. 
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