P1 :	5MCAD13 <i>Page No 1</i>	
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, M.Tech - Civil Engineering (MCAD) Make-up Examination; Feb - 2017 Continuums Mechanics-Classical and FE Approach Time: 3 hrs		
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.		
ii) If any missing data, Assume suitably.		
_	UNIT - I	10
1 a.	Derive equation of equilibrium for 2D element in Cartesian coordinate systems.	10
b.	Derive the compatibility equation for a plane strain problem.	10
2 a.	Derive the equation of two dimensional state of strain at a point.	12
b.	Derive the strain-displacement relation for a 2D element in Cartesian Co-ordinate system.	8
2	UNIT - II	-
3 a.	Write a note on stress polynomials and their limitations.	5
b.	Investigate the problem of plane stress as	
	$\phi = \frac{q}{8c^3} \left[x^2 \left(y^3 - 3c^2 y + 2c^3 \right) - \frac{y^3}{5} \left(y^2 - 2c^2 \right) \right]$ in the region $y = \pm c$ & $x = 0$ and also plot the	15
	stress on rectangular plate of size $(l \times 2c)$.	
4 a.	Derive the expression for bending of a cantilever beam subjected to a point load at the free	
	end with usual notations. Take cross-section of beam as $b = 1$ (unit width) and	15
	d = 2c [1 x 2c].	
b.	State and explain St. Venant's principle with example.	5
UNIT - III		
5 a.	Derive an expression for thick walled cylinder subjected to Internal and External pressure with usual notations.	12
b.	A thick cylinder of inner radius 150 mm and 25 mm thick is subjected to an internal	
	pressure of 22 N/mm ² . Determine the radial and hoop stress in the cylinder at inner and	8
	outer surfaces.	
ба.	Derive expression for pure bending of curved bar.	10
b.	Derive 2D equilibrium equation in polar coordinate system.	10
UNIT - IV		
7 a.	Explain briefly :	

- i) Principal stress and Principal plane
- ii) Stress invariants
- iii) Octahedral stress.

9

Page No... 2

P15MCAD13 b. A rectangular metal bar element of cross-section 60 x 30 mm and is subjected by axial

tensile force of 250 kN. Determine, normal, shear and resultant stresses on a plane whose normal has following direction cosines :

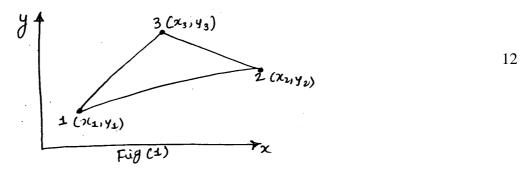
i)
$$l = m = \frac{1}{\sqrt{2}}$$
 & $n = 0$ ii) $l = m = n = \frac{1}{\sqrt{3}}$.

8. The stress components at a point in a stressed body are as follows :

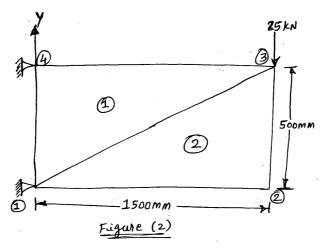
$$\sigma_x = 0.5$$
 $\sigma_y = 0.7$ $\sigma_z = 0.6$
 $\tau_{xy} = 1.0$ $\tau_{zy} = 1.2$ $\tau_{zx} = 0.8$

Determine :

i) Principal stress and Principal planes


iii) Maximum shear stress

ii) Hydrostatic and Deviational stress


iv) Octahedral stress (Normal and shear stresses).

UNIT - V

9 a. Determine the shape function for the constant strain triangle (CST). Use polynomial functions, as shown in Fig (1).

- b. List out and explain the use of Gauss qudrature for numerical integration.
- 10. Determine the displacements at the nodes for the following 2D solid continuum considering a constant thickness of 25 mm, Poisson's ratio, µ as 0.25 and Modulus of elasticity 'E' as $2x10^5$ N/mm². The continuum is discritized with two CST plane, stress elements as shown in Fig. 2.

20

8

* * *

11

20