U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)
Third Semester, M. Tech. - Civil Engineering (MCAD)
Semester End Examination; Dec - 2016/Jan - 2017
Reliability Analysis and Design of Structural Elements

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

ii) Assume missing data if any.

UNIT - I

1 a. Find the mean, standard deviation and coefficient of variance for the grouped data given,

Class	1 – 10	11 – 20	21 – 30	31 – 40	41 – 50	51 – 60
Frequency	03	16	26	31	16	08

b. In a data set of n = 200 on yield strength of steel, $\bar{x} = 500$ MPa and $\sigma = 60$ MPa. However, later on it's found that a value of 415 MPa was wrongly entered as 451 MPa. Find the corrected mean and corrected standard deviation.

2 a. The following table gives the strength of the concrete. Find the central moments, coefficient of skewness and coefficient of Kurtosis.

b. The cube strength of concrete follows a normal distribution with $\mu_x=30~\text{N/mm}^2$ and $\sigma_x=45~\text{N/mm}^2$,

Calculate: i) P (x < 25)

ii) $P(35 \le x \le 45)$.

UNIT-II

- 3 a. Derive the normal equation of best fit parabola by lest square method.
 - b. The data on cube strength and Cylinder strength is given below,

Cube Strength N/mm ² (x _i)	Cylinder Strength N/mm ² (y _i)
15.17	9.86
17.92	11.29
20.13	12.48
22.54	14.65
24.80	15.38
18.67	11.95
22.91	14.43
27.70	18.00
29.24	18.42
18.27	11.69

Determine the sample covariance, co-relation and coefficient between x_i and y_i .

10

10

10

10

10

12

8

20

- 4 a. The data on the compressive strength of concrete is given below:
 - i) Fit a straight line ii) Fit a parabola iii) Find which is better fit

Days (x _i)	1	3	7	10	14	21	28
Compressive strength N/mm 2 (y_{ij}	7.2	10.5	13.2	15.6	18.1	20.3	25.2

b. Fit a curve of the form $y = ab^x$ for the following data. Find the shrinkage strain

when x = 7.5

Days (x _i)	1	2	3	4	5	6	7	8
Shrinkage strain (y _{i)}	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1

UNIT - III

5. For the following data, a log normal distribution and proposed. Find the expected frequencies that are proposed. Conduct a Chi-square test to accept (d) reject the proposal.

 Class MPa
 12 - 14
 14 - 16
 16 - 18
 20 - 22
 22 - 24
 24 - 26

 Frequency
 16
 53
 88
 30
 15
 03

6. Derive the statistics of $R = f_y A_{st} d \left[1 - \frac{0.77 f_y A_{st}}{f_{ck} b d} \right]$

$$f_{y} = N[425, 45]MPa$$

$$f_{ck} = N[23.2, 6.8]MPa$$
Where $A_{st} = N[1500, 60]mm^{2}$

$$b = N[230, 12]mm$$

$$d = N[450, 15]mm$$

List the variables in the order of their contribution to randomness of 'R'.

UNIT-IV

7. Determine ' β ' by FOSM method by using the failure function,

i)
$$M = \frac{\pi^2 EI}{l^2} - Q$$
 ii) $M = I - \frac{Ql^2}{\pi^2 E}$

$$E = N \left[2.03 * 10^5, \ 0.203 * 10^5 \right] MPa$$
Where $Q = N \left[700 * 10^3, \ 210 * 10^3 \right] N$ 20
$$I = N \left[12.5 * 10^6, \ 0.0625 * 10^6 \right] mm^4$$

$$l = N \left[5000, \ 150 \right] mm$$

Check whether β is Invariant (or) not Invariant.

8. The failure function $g(x) = d - \frac{Q}{2f_s t_w}$

$$Q = N[4200, 1000]N$$

$$f_s = N[95, 10]N / mm^2$$
Where $d = N[50, 2.5]mm$

$$\sigma_{tw} = 0, \quad \frac{d}{t_w} = 40$$

Find the reliability Index 'β' by AFOSM method. Use Harofer-Lind approach.

UNIT - V

20

20

9. A short column has a diameter X_1 and is loaded with an axial load X_2 . The ultimate compressive stress of column is X_3 . The variables are normally distributed and have the following statistics.

$$X_{1} = N(3.5, 0.4) X_{2} = N(10, 10) X_{3} = N(2.5, 0.5)$$

$$g(x) = \frac{\pi X_{1}^{2}}{4} - \frac{X_{2}}{X_{3}} = 0$$

Find ' β ' by AFOSM method using Fisseler's algorithm.

10. The strength of an axially loaded column is given by,

$$R = 82912.5 f_{ck} + 1250 f_{y}$$

Where $f_{ck} = N[19.54, 4.1]$ N/mm^2 , $f_y = N[469, 46.9]$ N/mm^2 Generate the statistics of (R - S). The column is subjected to an axial load of S = N[2100, 500]kN. Generate statistics of (R - S) by Monte Carlo simulation technique. Find the probability of failure of column, by counting negative values of (R - S).

* * *