P15MCAD331	1		Page No 1								
	U.S.N										
P.E.S. College of Engineering, Mandya - 571 401											
(An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, M. Tech Civil Engineering (MCAD)											
Semester End Examination; Dec - 2016/Jan - 2017											
	Computer Aided Design of S	ubs	truc	tures	5						
Time: 3 hrs					Ν	lax.	. Мс	arks	s: 10	00	

Note: i) *Answer FIVE full questions, selecting ONE full question from each unit. ii*) *Assume missing data, if any.*

UNIT - I

- 1 a. Distinguish between general and punching shear failures.
- b. A square footing is proposed to carry a load of 1000 kN on a ground with unit cohesion of 15 kN/m^2 , friction angle of 20° and unit weight of 16 kN/m³ at a depth of 1.2 m below ground level. If the safety factor is 2.5, find the size of the footing. Take,

$$N_{q} = \tan^{2} \left(45 + \frac{\phi}{2} \right) e^{\pi \tan \phi}$$

$$N_{c} = \left(N_{q} - 1 \right) \cot \phi$$
12

$$N_{\gamma} = 2(N_q + 1)\tan\phi$$

- 2 a. Distinguish between consolidation and secondary settlements.
- b. A ground level water tank of radius 3 m, height 5 m and free board of 0.5 m is proposed at a site consisting of 6 m thick saturated normally consolidated clay resting on rocky stratum. The properties of clay are as follows:

Soil modulus = 20 MPa, Poisson's ratio = 0.4, Influence factor = 0.9, Natural water content = 30%, Liquid limit = 50%, Specific gravity of soil solids = 2.7, Angle of load dispersion = 45° . If the degree of consolidation is 50%, estimate the total settlement.

UNIT - II

- 3 a. Discuss the methods of treatment for foundation of a light structure on B.C. Soil.
 10

 10
 10
- b. What is liquefaction? List the ill effects of liquefaction. Discuss any two measures to mitigate against liquefaction.
- 4 a. Discuss the steps involved in the analysis of strip footing by soil line method.
- b. A 4 m long, 1 m wide and 0.6 m deep combined footing carries loads of 1000 kN each at 0.5 m from each end. Footing is made of M30 grade concrete and tests on ground with modulus of subgrade reaction of 50 MN/m³. Using finite difference approach, find the displacement at the centre.

Contd....2

8

6

14

8

12

P15MCAD331

UNIT - III

5 a.	Discuss a method of analysis of piles for lateral load carrying capacity.	10					
b.	Explain the method of separating skin frictional component from end bearing component	10					
	using cyclic pile load test.						
6 a.	Explain the method of evaluating the capacity of pile group. Find the group efficiency of						
	9 piles arranged in a square pattern equally spaced.						
b.	A pile foundation system is proposed in a 12 m thick clayey soil having unconfined						
	compressive strength of 180 kN/m ² . If adhesion factor is 0.8, design a pile group neglecting	12					
	end bearing. Total load on foundation is 1000 kN.						
	UNIT - IV						
7 a.	What are the main requirements in the design of foundation for transmission line tower?	10					
b.	Discuss the critical forces acting on the foundation of transmission line tower.	10					
8 a.	Discuss the basic information to be collected in the design of foundation for transmission line						
	tower.	10					
b.	fine soil-structure-interaction. What is its significance? Discuss how soil structure						
	interaction can be considered in the design of foundations?	10					
	UNIT - V						
9 a.	Which are the dynamic properties of soil? How are they determined?	10					
b.	Define 'Natural frequency' of a vibrating system. Explain Barkan's method of determining	10					
	the natural frequency of foundation-soil system.	10					
10 a.	Discuss the method of analysis and design of block foundation carrying a vibrating machine.	10					
b.	Resonance occurs at a frequency of 20 cycles/sec in a vertical vibration test on a block						
	1 m x 1 m x 1 m. Determine the coefficient of elastic uniform compression of soil given the						
	weight of oscillator is 800 N and that the force produced by it at 10 cycles/sec is 10000 N.						
	Find the amplitude in vertical direction at 10 cycles/ sec.						

* * *