]	P1	5MECE31 Page No 1		
		U.S.N	7	
	STO AT	P.E.S. College of Engineering, Mandya - 571 401	_	
4	all	(An Autonomous Institution affiliated to VTU, Belgaum)		
Third Semester, M. Tech – VLSI Design and Embedded System (MECE) Semester End Examination; Dec - 16/Jan - 2017				
		VLSI Testing and Verification		
	Т	ime: 3 hrs Max. Marks: 100	-	
1	Na	ote: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I		
1 a	•	Briefly discuss the VLSI technology trends affecting testing as complexity in the design	10	
		increases.	10	
t).	Describe bridging faults in digital circuits.	4	
C	2.	Explain Digital and Analog VLSI testing in digital circuits.	6	
2 a	ı.	List the fault models used in recent technology. Explain S–a–1 on one of the input of NAND ₂ gate.	6	
ł).	Discuss the effect of probable bridging fault in NOR ₂ gate with CMOS schematic and truth	0	
		table.	8	
C	с.	Realize $F = x_1x_2 + x_3x_4$ and find the Boolean difference with respect to x_3 .	6	
		UNIT - II		
3 a	ı.	Explain the term controllability and observability with relevant diagrams.	6	
ł	э.	Analyze the clocked hazard free latches used in Level-Sensitive Scan Design (LSSD).	10	
c	с.	Obtain the diagram of 4-bit LFSR for the polynomial $P(x) = x^3 + x + 1$ of degree 3.	4	
4 a	ì.	Discuss the AD-HOC design rules to improve terlability.	4	
ł	э.	Discuss the architecture of boundary scan.	10	
c	с.	Realize the block diagram of circular flip flop using circular BIST architecture.	6	
		UNIT - III		
5 a	ì.	Discuss the RAM organization with neat block diagram.	12	
ł).	Analyze the equivalence checking paths of 2 models employed in formal verification.	8	
6 a	ı.	Explain the proposed BIST technique for testing embedded RAM with block diagram.	12	
b	э.	Discuss the black-box and white-box functional verification approaches.	8	
UNIT - IV				
7 a	ì.	Analyze the behaviour of XOR gate using event-driven simulation when One i/p or Both i/p change.	8	
ł	5.	Along with flow diagram, explain levels of verification.	12	

P15MECE31 Page No 2			
8 a. Explain the cycle-base simulation employed for synchronous circuit.	8		
b. Discuss:	12		
i) Hardware modules ii) Verification intellectual property iii) Waveform views.	12		
UNIT - V			
9 a. Explain the basic functionality of static timing analysis along with flow diagram.	10		
b. Analyze the min and max timing paths in clocking employed to EXOR gate.	6		
c. Briefly explain layout rule checks.	4		
10 a. List out (any five) limitations of static timing analysis.	10		
b. Write a note on parasitic extraction.	4		
c. Briefly explain electrical rule checks.	6		

* * *