U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, M. Tech. - VLSI Design and Embedded Systems (MECE)
Make-up Examination; Feb -2017
Digital System Designing Using Verilog

Time: 3 hrs Max. Marks: 100

Note: i) Answer **FIVE** full questions selecting **ONE** full question from each unit. ii) Assume suitable missing data if any.

UNIT - I 1 a. Develop a sequential circuit with a single data input's' and single data output '1'. The output is 1 when the input value in the current clock cycle is different from input value in the 6 previous clock cycle. Describe also the timing diagram. b. Explain the capacitive load and propagation delay. 4 Discuss the design methodology for an embedded system with block diagram. 10 c. 2 a. Develop a verilog model for the burglar alarm to be priority encoder with zone 1 having 10 highest priority zone 8 having lowest priority. Explain axioms of Boolean Algebra and also prove the absorption laws using only the b. 10 axioms. UNIT - II Develop a verilog model of a code converter to convert 4 bit gray code to 4 bit unsigned 3 a. 10 binary integer. Describe IEEE standard 754 floating point formats. h. 10 4 a. Design a circuit for a modulo 10 counter and also develop a verilog model. 10 Explain clock synchronous timing methodology with relevant diagram. b. 10 **UNIT - III** 5 a. Explain multiport memories. Develop a verilog model of a dual port 4K x 16 bit flow through synchronous SRAM. One port allows data to be written and read while other port 8 allows only data to be read. Compute 12 bit ECC word corresponding to 8 bit data word 01100001. 4 b. Explain the difference between synchronous and asynchronous static RAM using timing c. 8 diagram. 6 a. Describe I/O block of an FPGA with neat schematic. 6 b. Explain programmable array logic with example. 10 Describe differential signalling. How does it improve noise immunity? c. 4

P15MECE143	Page No 2
------------	-----------

UNIT - IV

7 a.	Develop a verilog model to determine greater of Value-1 and Value-2.				
b.	Describe instruction encoding of Gumnut processor.				
8 a.	Explain the working of 3 bit R string DAC.	8			
b.	Explain different serial interface standards.				
	UNIT - V				
9 a.	Explain Kernel of an algorithm. If Kernel of an algorithm is accelerated by a factor of 100				
	and Kernel accounts for 90% of execution time before acceleration, what is overall speed	4			
	up?				
b. Describe	Describe briefly video edge detection using Sobel convolution mask. Write a Sobel edge	0			
	detection algorithm.	8			
c.	Develop a verilog model for Sobel accelerates bus slave interface.	8			
10 a.	Explain different optimization techniques in design methodology.	10			
b.	Discuss built in self test technique.	10			

* * *