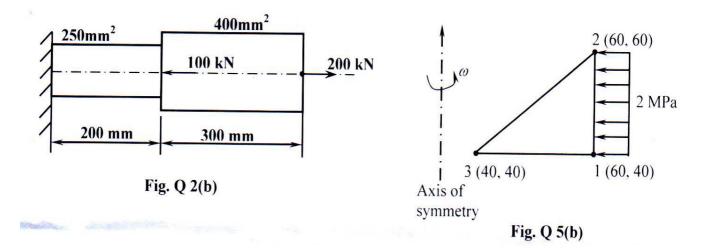
	U.S.N	
X	P.E.S. College of Engineering, Mandya - 571 401	
(An Autonomous Institution affiliated to VTU, Belgaum) First Semester, Mechanical Engineering (MMDN) Make-up Examination; Feb - 2017		
	me: 3 hrs Max. Marks: 100	
INOL	 te: i) Answer any FIVE full questions, selecting at least ONE from each unit. ii) Missing data if any maybe suitably assume UNIT-I 	
1 a.	Differentiate between essential and non-essential boundary conditions.	6
b.	Explain convergence criteria of a displacement model and mention how they are satisfied by	6
	the selected displacement function.	0
c.	Derive an expression for potential energy functional for a 3D elastic body subjected to body	8
	force, surface force and point load components in its x,y and z directions.	0
2.a	Derive shape functions for a 3-noded bar element in natural coordinates and plot their	6
	variations along the element	0
b.	For the stepped bar shown in Fig Q 2(b), determine nodal displacements, element stresses	14
	and support reaction. Take E=200GPa.	11
	UNIT-II	
3.a	Derive strain displacement matrix, B for a CST element.	6
b.	With necessary sketches, explain the concept of Iso, Sub and Super parametric elements.	6
c.	The nodal coordinates of a triangular element at node 1, 2 and 3 are (1,1), (4,1) and(1,5)	
	respectively. The nodal displacement are given by	
	$u_1 = 0.005mm;$ $u_2 = 0.0mm;$ $u_3 = 0.005mm$	8
	$v_1 = 0.002mm; v_2 = 0.0mm; v_3 = 0.0mm$	
	Determine the strain-displacement matrix, B and hence calculate element strains $\epsilon_{x_x} \epsilon_{y_y} \gamma_{xy}$	
4 a.	Obtain the Jacobian matrix for the quadrilateral element	10
b	Derive shape functions for 4-noded Tetrahedral element.	10
	UNIT-III	
5 a.	Derive the shape functions for an axi-symmetric triangular element.	8
b.	The element of an axi symmetric body is rotating with a constant speed of 200 rpm and	
	subjected to an external pressure of 2 MPa as shown in Fig Q 5(b). If the mass density of the	12
	material $\rho = 7.6 \times 10^{-6} \text{ kg/mm}^2$, evaluate the equivalent force at nodes. The nodal coordinates	12
	shown in figure in mm.	

P15MMDN12


6. For the truss structure shown in Fig Q 6, determine the nodal displacements, stress in horizontal member and reaction at top support.

UNIT-IV

- 7.a Write Harmite shape functions of a 2-noded beam element and draw their variations along the element. 6
- b. For the beam shown in Fig Q 7(b), determine the nodal deflections, slops and the vertical deflections at the mid-point of distributed load. Use two element approximation and take $14 E = 70 \text{ GPa}, I = 3 \times 10^{-4} \text{ m}^4$.
- 8.a Write consistent mass matrix of plane truss element.
- b. A one-dimensional bar of length L, modulus of elasticity E, mass density ρ and cross-sectional area A is fixed at one end and free at other end. Determine its first two natural 18 frequencies using two elements of equal length.

UNIT-V

- 9 a. Using Galerkin's approach, derive the element conduction matrix for 1D element used for steady state heat transfer problems.
 - b. Consider a brick wall (Fig Q 9(b)) of thickness L = 0.3 m, $K = 0.7 \text{ W/m}^{\circ}\text{C}$. The inner surface is at 28°C and the outer surface is exposed to cold air at -15°C. The heat transfer coefficient associated with the outside surface is $h = 40 \text{ W/m}^{2\circ}\text{C}$. Determine the steady-state temperature distribution within the wall and also the heat flux through the wall. Use two-element model.
- 10. Fig Q 10 shows a uniform aluminium fin of diameter 20 mm. The root (left end) of the fin is maintained at a temperature of $T_0 = 100^{\circ}$ C while convention takes place from the lateral (circular) surface and the right (flat) edge of the fin. Assuming K = 200 W/m°C, $h = 1000 \text{ W/m}^{2\circ}$ C and $T_{\infty} = 20^{\circ}$ C, determine the temperature distribution in the fin using a two-element idealization.

8

2

12

20

Page No... 2

Contd.....3

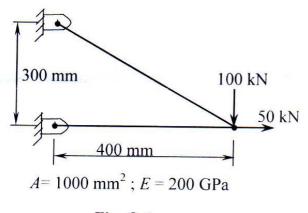
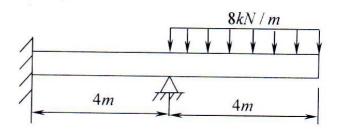
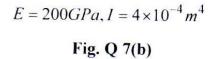
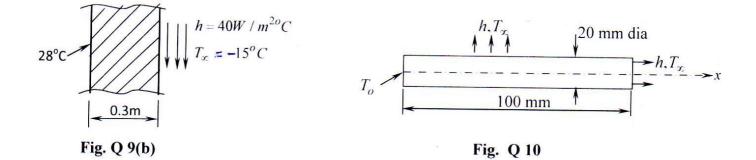





Fig. Q 6

* * *