P13EC56 Page No 1		
E X .		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec - 2017 / Jan - 2018 Optical Communication System		
	e: 3 hrs Max. Marks: 100	
INOTE	e: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I	
1 a.	Differentiate between the step index fiber and graded index fiber with regard to construction, performance and applications.	6
b.	Calculate the number of modes that can propagate through the fiber which has core radius	
	of 25 micron, core refractive index (n_1) of 1.48 and relative refractive index difference (Δ)	4
	of 0.01. Also find out the percentage of optical power flowing in cladding if $\lambda = 1320$ nm.	
c.	Derive the necessary condition that the angle of wave incidence (θ) should satisfy in a	1(
	dielectric slab waveguide for satisfactory light wave propagation.	1(
2 a.	Draw the schematic diagram of fiber drawing apparatus used in fiber fabrication and explain.	8
b.	With neat sketches, describe the two bending losses that occur in optical fibers.	8
c.	Explain the Plasma-Activated Chemical Vapour Deposition (PCVD).	4
	UNIT - II	
3 a.	Sketch the cross sectional diagram of a double hetero structure light-emitter diode along with energy based diagram and describe its working.	8
b.	With the usual notations, derive the following equation for the number of photos per	
	volume for a laser:	8
	$\phi_s = rac{ au_{ph}}{q.d} (au - au_{th}) + au_{ph} R_{sp}.$	0
c.	A GaAs optical source with refractive index of 3.6 is coupled to a silicon fiber of	
	refractive index of 1.48. Calculate the Fresnel reflection at the interface and the power	4
	loss in db.	
4 a.	An LED has a circular emitting area of radius 35 micron and Lambertian emission pattern	
	with 150 $W/(cm^2, Sr)$ axial radiance. Calculate the powers coupled into step index fibers	6
	one has a core radius of 25 μ m and NA = 0.20, and the other has a core radius of 50 μ m and NA = 0.20 and compare them.	0
1.	Discuss with the figure the different expects of fiber to fiber isints with respect to model	

b. Discuss with the figure the different aspects of fiber-to-fiber joints with respect to modal distributions of optical energy.

8

6

c. With neat sketches, explain fusion splicing and V-groove splicing.

UNIT - III

- 5 a. Draw the pin photo diode circuit diagram with an applied bias and load resistor, explain 6 its operation. b. For a given silicon avalanche photodiode, the quantum efficiency is 65 percent at a wavelength of 900 nm. If 0.5 micro watt of optical power produces a multiplied 6 photocurrent of 5 microns, calculate the primary photocurrent I_P and multiplication factor *M*. c. With neat circuit diagrams of high impedance and trans impedance amplifiers, explain its 8 operations. 6 a. Explain the fundamental concepts of a coherent light wave system with a neat diagram. 6 b. Draw the photo detector receiver circuit and its equivalent circuit and discuss about noise 8 sources affecting the SNR. c. Discuss the eye pattern features with a simplified eye diagram. 6 UNIT - IV 7 a. Draw the block diagram of optical analog link and explain the major noise contributors. 7 b. Develop an expression for the total rise time of optical digital link. 8 c. Discuss about the basic principles of radio-over-fiber link. 5 8 a. Discuss the implementation of passive and active components in a typical WDM network 8 containing different optical amplifiers. b. Sketch and explain : i) Multi channel amplitude modulation 12 ii) Sub-carrier multiplexing. UNIT - V 9 a. Describe briefly the semiconductor optical amplifier and doped fiber amplifier. 8 b. An EDFA is pumped at 982 nm with 30 mW pump power. If the gain at 1550 nm is 20 db, 4 calculate the maximum input power and maximum output power in watt. c. Describe the applications of three classes of amplifier used in optical communication, with 8 neat diagram. 10 a. With neat sketches, explain the basic optical network topologies. 10
 - b. Draw the two-fiber UPSR and four-fiber BLSR architectures used in SONET and SDH networks and explain.