P13EC36 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec - 2017/Jan - 2018 Measurements and Instrumentation

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

	UNII - I			
1 a.	Define the following terms with an example:	6		
	(i) Precision (ii) Accuracy (iii) Resolution.	O		
b.	Explain the working of AC voltmeter using half wave rectifier.	6		
c.	Convert a basic D'Arsonal movement with an Internal resistance of 50 Ω and a full scale			
	deflection current of 2 mA into a multi range DC voltmeter with voltage ranges of	8		
	0 - 10 V, 0 - 50 V, 0 - 100 V and 0 - 250 V.			
2 a.	Explain the working of successive approximation type DVM with a neat diagram.	10		
b.	Discuss the working of Dual Slope Integration type DVM (voltage to time conversion).	10		
	UNIT - II			
3 a.	Explain how lead resistance is measured using a bridge? Also give conditions for bridge	8		
	balance.	G		
b.	Explain the working of a capacitance comparison bridge with the help of a diagram and	6		
	equations.	O		
c.	In a standard wheat stone bridge E = 6 V, R_1 = 1 k Ω , R_2 = 2.5 k Ω , R_3 = 3.5 k Ω and	6		
	$R_4 = 10 \text{ k}\Omega$. Find the current through the galvanometer. Assume $R_g = 300 \Omega$.	O		
4 a.	Find the series equivalent inductance and resistance of the network that causes an opposite			
	angle (Hay bridge) to null with the following bridge arms:			
	$W=3000~rad/s$, $R_2=10~k\Omega,~R_1=2~k\Omega,~C_1=1~\mu F,~R_3=1~k\Omega.$			
b.	Explain the Wagner's Earth connection with a neat diagram.	8		
c.	Explain the following:	6		
	(i) Applications of Wheatstone Bridge (ii) Inductance Comparison Bridge.	U		
	UNIT - III			
5 a.	List Important advantages of Electrical transducers.	8		
b.	. What are the variable reluctance type transducers? Explain.			
c.	List important advantages and disadvantages of semiconductors strain gauge.	6		

P13	EC36 Page No 2			
6 a.	Explain the constructional features of a thermometer with a neat diagram.	8		
b.	How strain gauge can be used in a bridge arrangement, explain with relevant diagram?	6		
c.	List the important advantages of LVDT.	6		
	UNIT - IV			
7 a.	With the help of neat diagram, explain the working of photo transistor. Also give one	10		
	application of it.	10		
b.	Briefly explain the following with relevant diagram:	10		
	(i) Photomultiplier tube (ii) Photocells.	10		
8 a.	With a neat diagram, explain the working of modern laboratory signal generator.	10		
b.	With neat block diagrams, explain the working of a pulse generator.	10		
	UNIT - V			
9 a.	Explain the working of digital storage oscilloscope with a neat diagram and waveforms.	10		
b.	With neat diagram, explain analog storage oscilloscope of bistable storage type.	10		
10 a.	Explain the three different types of harmonic distortion analyzer.	10		
b.	With the help of a block diagram, explain the working of RF spectrum analyzer.	10		