P13E0	Page No 1					1		
Personal outle age	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)								
Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec - 2017/Jan - 2018								
Information Theory and Coding								
Time	: 3 hrs		U	Ма	IX. M	arks:	100	
Note:	Answer FIVE full questions, selecting ONE full que UNIT - I	estion j	from eac	h unit.				
1 a.	Define and discuss the following terms :						9	
	i) Self information ii) Mutual information	ii	i) Avera	ge self	inforn	nation		
b.	Find the relationship between Hastley nats and bits.						6	
c.	Consider a source and which generate 3 symbols with the $P = \{0.5, 0.25, 0.25\}$, calculate;						late; 5	
	i) Self information ii) Entropy.						5	
2 a.	State and prove the source coding theorem.						5	
b.	Discuss the JPEG standard for lossy compression.						5	
c.	Consider a DMS with seven possible symbols x : = 1, 2, 7 and the corresponding							
	probabilities are: $P(x_1) = 0.37$, $P(x_2) = 0.33$, $P(x_3) = 0.16$, $P(x_4) = 0.07$, $P(x_5) = 0.04$,							
	$P(x_6) = 0.02, P(x_7) = 0.01;$							
	i) Determine Huffman code for the same						10	
	ii) Determine the average number of binary digits/symbol							
	iii) Find the efficiency of the code.							
	Place the composite symbol as low as possible.							
	UNIT - II							
3 a.	Explain the noisy channel theorem interms of critic	al rate.					5	
b.	Obtain Shannon limit derived from channel capacit	y theor	em.				7	
c.	Consider the channels A, B and cascaded AB show	n in be	low figu	re.				
	i) Find C_A and C_B ii) Determine the	combi	ned capa	city of	C _{AB}			
	iii) Explain relation between C_A , C_B and C_{AB} .							
	$\frac{2/3}{\frac{1}{3}}$		2/3 /5		+B		8	

- 4 a. Explain the information capacity theorem.
 - b. With neat block diagram, explain the digital communication system indicating the various types of communication channels.

Contd....2

10

10

P13EC53

UNIT - III

	UN11 - 111						
5 a.	Explain the block diagram of digital communication system and mention the objectives						
	of error control coding scheme.	10					
b.	List the properties of field.	5					
c.	Define the following :	5					
	i) Word ii) Code iii) Block code iv) Hamming weight v) Code rate.	5					
б. а	Define syndrome decoding and explain the steps involved.	5					
b.	Consider a (7, 4) linear block code whose generator matrix is given below :						
	$\begin{bmatrix} 1 & 0 & 0 & : & 1 & 0 & 1 \end{bmatrix}$						
	$\begin{bmatrix} 1 & 0 & 0 & 0 & : & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & : & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & : & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & : & 0 & 1 & 1 \end{bmatrix}$						
		10					
	i) Find all the code vector of this code ii) Find the parity check matrix of this code						
	iii) Find the minimum weight of this code.						
C	Define: i) Hamming weight ii) Hamming distance.	5					
0.	UNIT - IV	5					
7 a.	Define cyclic codes and explain how cyclic codes are generated from the generating						
	polynomial?	8					
b.	Compute generator matrix G and parity check matrix H for a binary code of length $n = 7$,						
	given,	8					
	$x^{7}-1=(x-1), (x^{3}+x+1)(x^{3}+x^{2}+1), g(x)=x^{3}+x+1.$						
c.	Define prime polynomial.	4					
8 a.							
b.							
	i) Quasi cyclic codes and shortended cyclic codes						
	ii) Burst error correction iii) Firo code iv) Golay code.						
	UNIT - V						
9 a.	Define constraint length and explain a shift register encoder that generates the tree code.	6					
b.	Explain the matrix description of convolutional codes.						
c.	Define and explain the followings :						
	i) Convolutional code ii) Generator polynomial iii) Sliding block code.	6					
10 a.	Discuss the concept of coded modulation. 1						
b.	Explain the general structure of TCM encoder and list of the design rules based on	10					
	heuristics.	10					