
$$x(t) = A\cos w_0 t + B\sin w_0 t$$

 $\mathbf{y}(t) = B\cos w_0 t - A\sin w_0 t.$

Where A and B are random variables assumed to have zero mean and are uncorrelated. Also, A and B are assumed to have variances σ^2 .

- b. Consider the random process: $X(t) = A\cos(2\pi f_c t + \theta)$ where f_c and A are constants and θ is a random variable uniformly distributed over the interval (- π , π). Determine the autocorrelation function of X(t).
- c. The auto correlation function of a wide sense stationary process X(t) is shown in Fig. Q.2(c).

Find the power spectral density $S_x(f)$ of the random process X(t).

UNIT - II

3 a. A signal $g(t) = 2\cos \pi t + 640\pi t$ is ideally sampled at $f_s = 500$ Hz. If the sampled signal is passed through an ideal low pass filter with a cutoff frequency 400 Hz. What frequency components will appear in the filter output?

8

6

6

8

Page No... 2

10

P13EC54

- b. State and prove sampling theorem for an analog signal by sequence of impulses. Assume that the spectrum of x(t) is band limited, it is zero outside the interval $-f_m < f < f_m$. Sketch spectrum 8 of signal x(t) and its sampled version $x(nT_s)$.
- c. Illustrate Quadrature sampling of band pass signal? With the help of spectrum and 4 expression.
- 4 a. Compute the following for a signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ which is sampled at the rate of 250 samples per second:
 - i) Sketch the spectrum of the sample signal
 - ii) Specify the cutoff ideal reconstruction filter so as to recover g(t) from $g_{\delta}(t)$
 - iii) Specify the Nyquist rate for the signal g(t).
 - b. Describe the practical sample and hold circuit and its reconstruction with diagrams and 10 equations.

UNIT - III

- 5 a. Explain regenerative repeater in PCM system with block diagram. 6 b. Describe delta modulation with the help of block diagram and expressions. 8 c. A signal $m_1(t)$ is band limited to 3.6 kHz and three other signals $m_2(t)$, $m_3(t)$ and $m_4(t)$ are band limited to 1.2 kHz each. These signals are to be transmitted by means of TDM. i) Setup a scheme for accomplishing this multiplexing requirement, with each message signal 6 sampled at its Nyquist rate ii) What must be the speed of the commutator in samples/second? iii) Determine the minimum transmission bandwidth of the channel. 6 a. A delta modulator transmitter with a fixed step of 0.5 V is given a sinusoidal message signal. If the sampling frequency is twenty times the Nyquist rate. Determine; i) The maximum permissible amplitude of the message signal, if slope overload is to be 6 avoided ii) The maximum destination SNR under the above condition. 10 b. Develop an expression for output signal to quantization noise ratio in PCM system. c. Assume a speech signal with a minimum frequency of 3.4 kHz and maximum amplitude of 1 V. The speech signal is applied to a delta modulator with its bit rate at 25 kbps. Discuss the 4 choice of an appropriate step size for the delta modulator. UNIT - IV 7 a. Write the signalling data formats for a given bit stream 11011011in :
 - i) Unipolar ii) Manchester
 - iii) NRZ bipolar iv) Polar.

8

P13EC54 Page No 3		
b.	Compute the duobinary encoding sequence without a pre-coder for a given sequence	4
	001101001.	т
c.	Write duobinary encoder with pre-coder and duobinary detector block diagrams with related	8
	equations.	0
8 a.	Sketch and derive power spectra of a NRZ unipolar format.	10
b.	Explain eye pattern for evaluating the combined effect of ISI and channel noise with relevant	10
	diagrams.	10
UNIT - V		
9 a.	Write the equation to represent four symbols in QPSK. Explain signal space diagram of	
	QPSK with neat sketch. Also, explain its decision rule for the detection of the transmitted	10
	data sequence.	
b.	An FSK system transmits binary data at a rate of 10^6 bits per second. Assuming channel	
	noise is additive white Gaussian with zero mean and power spectral density $2 X 10^{-20}$ W/Hz	
	compute the average probability of error. Assume coherent detection and amplitude of	10
	received sinusoidal signal for both symbol '1' and '0' to be 1.2 microvolt. Given	

erf (3) = 0.99998, erf (3.3) = 0.999998.

- 10 a. Describe the frequency shift keying transmitter and receiver with the aid of block diagrams. 10
 - b. Explain BPSK with generation, reception block diagrams and equations to represent symbols
 '0' and 'l'

10

* * *